Familiar Cultural Practices Battle Climate Change - USDA ARS

Familiar Cultural Practices Battle Climate Change - USDA ARS

March 28, 2013

U.S. Department of Agriculture (USDA) scientists and their partners are providing guidance to growers in Montana and the Dakotas on how they can use some tried-and-true agricultural practices to reduce their climate change footprint.

USDA ARS Researcher taking field tests

ARS technician Joy Barsotti collects greenhouse gas samples from a static chamber at an experimental site in eastern Montana. ARS scientists are helping growers reduce their climate change footprint. (Photo by Upendra Sainju)

Upendra Sainju and his colleagues with the Agricultural Research Service (ARS) in Sidney, Mont., have been studying how no-till systems, crop rotation and other approaches can reduce greenhouse gas emissions, sustain crop yields and cut back on the use of nitrogen fertilizer that pollutes the air and water.

Agriculture contributes about 25% of the carbon dioxide produced by humans and 70% of the similarly produced nitrous oxide being released into the atmosphere. Tillage, cropping sequences, crop-fallow management practices, and the use of nitrogen fertilizers all play significant roles in those emissions.

The researchers evaluated the effects of irrigation, tillage, cropping systems, and nitrogen fertilization on greenhouse gas emissions from five cropping systems in sandy loam soil in western North Dakota, where growers can irrigate fields.

They also studied three cropping systems in loam soil in eastern Montana where irrigation is not usually an option. They raised conventionally tilled malt barley with and without nitrogen fertilizer, no-till malt barley with and without fertilizer, and a no-till malt barley-pea rotation with and without fertilizer. Some systems were irrigated and others were not, and the researchers tracked soil temperatures and soil water content, measured plant biomass, and used static, vented chambers to measure greenhouse gases.

Their results, described in papers in the Journal of Environmental Quality and the Soil Science Society of America Journal, showed that regardless of whether the field was irrigated, the no-till malt barley-pea rotation with reduced nitrogen fertilizer rates was the most effective system for reducing greenhouse gas emissions and sustaining yields. They also found that the no-till barley-pea rotation reduced the need for fertilizers with no effect on yields.

The study is part of a comprehensive effort to examine the effects of irrigation and different management scenarios on greenhouse gas emissions in the northern Great Plains. Growers have known for decades that no-till improves soil quality and that rotating crops reduces weeds, diseases, and pests. But the study and others like it are prompting growers to adopt no-till, rotate crops and use less fertilizer.

Read more about this research in the March 2013 article in Agricultural Research magazine.

Dennis O'Brien

Online Master of Science in Agronomy

With a focus on industry applications and research, the online program is designed with maximum flexibility for today's working professionals.

A field of corn.