Yield Monitoring Systems: Understanding how we Estimate Yield

Discussion Topics

- Yield monitor components
- Calibrating the yield monitor
- Moisture sensing
- Yield monitor output
- Estimating crop yield
- Making yield maps

Yield Monitor Component Functions

Field Computer

- Monitors all sensors
- Displays harvest functions
- Logs data for storage and transfer <u>GPS System</u>
- Provides field position
 <u>Header Status Sensor</u>
- Logs data when down
- Stops logging when up

Yield Monitor Component Functions

Mass Flow Sensor

- Impact plate sensor (most popular)
- Mounted in clean grain elevator
- · Grain impacts plate
- Force of impact deflects load cell
- Voltage output from load cell
- Voltage is proportional to mass flow

Nehras

Calibrating the Yield Monitor

Why calibration is necessary:

- We only know the voltage output from the sensor
- We need to relate that to something real (lbs or bu)

Calibration procedure is specific to each yield monitor

- Collect mass of grain per time
- Computer records sensor output
- Enter grain mass into computer
- Computer develops equation to estimate mass flow from voltage output

Calibration Notes

Mass Flow Sensor

- Accurate calibration is critical!
- Our goal is to calibrate mass flow rate
- · Yield estimations come later
- Errors from 1 to 3% are expected (field average)
- Conduct <u>at least one</u> calibration per crop per year
- Test weights may affect accuracy...recalibrate

Moisture Sensing

Moisture is necessary for marketable yield

- Different sensor types:
 - Flow-through
 - Single-sample
- Electrical resistance of grain measured
- Indirectly proportional to MC
- Affected by temperature (measured), bulk density and surface moisture
- Manual entry not recommended

Output from the Yield Monitor Computer

Text file (.txt or .csv) format:

-96.484457,41.738819,2.98,1349101778,1,29,287,85,331,Greenstar 2 Monitor,"F0:north side young","L2:Soybean Harvest","93M11",7.0,13 -96.484458,41,738812,38,11349101779,1,27,287,85,331,Greenstar 2 Monitor,"F0:north side young","L2:Soybean Harvest","93M11",7.0,13	
96.44459,41.73803,4.03,14401780,1.41,287,6.5,33,1,0reenstar 2 Monitor, "F0:north side young", L2:Soybean Harvest", 93M11", 7,0,13 96.44467,41,73874,3.46,134010781,1.42,87,6.5,33,1,0reenstar 2 Monitor, "F0:north side young", L2:Soybean Harvest", 93M11", 7,0,13 96.4447,41,73874,3.46,134010781,1.52,87,6.5,33,1,0reenstar 2 Monitor, "F0:north side young", L2:Soybean Harvest", 93M11", 7,0,13 96.4447,41,73874,3.46,134010781,1.52,87,6.5,33,1,0reenstar 2 Monitor, "F0:north side young", L2:Soybean Harvest", 93M11", 7,0,13 96.4447,41,73874,3.46,134010781,1.52,87,6.5,33,1,0reenstar 2 Monitor, "F0:north side young", L2:Soybean Harvest", 93M11", 7,0,13 96.44463,41,73875,5,27,134010786,1,62,87,6,53,31,0reenstar 2 Monitor, "F0:north side young", L2:Soybean Harvest", 93M11", 7,0,13 96.44463,41,73875,5,27,134010786,1,62,87,6,53,31,0reenstar 2 Monitor, "F0:north side young", L2:Soybean Harvest", 93M11", 7,0,13 96.44450,41,73871,51,74,1,134010786,1,62,87,6,53,31,0reenstar 2 Monitor, "F0:north side young", L2:Soybean Harvest", 93M11", 7,0,13 96.44450,41,73871,61,74,1134010786,1,61,87,6,53,53,1,0reenstar 2 Monitor, "F0:north side young", L2:Soybean Harvest", 93M11", 7,0,13 96.44450,41,73876,1,01,134010790,1,61,87,6,53,53,1,0reenstar 2 Monitor, "F0:north side young", L2:Soybean Harvest", 93M11", 7,0,13 96.44450,41,73866,3,9,11,34010790,1,67,287,6,53,33,1,0reenstar 2 Monitor, "F0:north side young", L2:Soybean Harvest", 93M11", 7,0,13 96.44450,41,73865,10,12,134010790,1,67,287,6,53,33,1,0reenstar 2 Monitor, "F0:north side young", L2:Soybean Harvest", 93M11", 7,0,13 96.44450,41,73865,10,12,134010790,1,67,287,6,53,33,1,0reenstar 2 Monitor, "F0:north side young", L2:Soybean Harvest", 93M11", 7,0,13 96.44450,41,73865,10,12,134010791,67,287,6,53,33,1,0reenstar 2 Monitor, "F0:north side young", L2:Soybean Harvest", 93M11", 7,0,13 96.44450,41,73865,10,12,134010791,72,72,87,6,53,33,1,0reenstar 2 Monitor, "F0:north side young", L2:Soybean Harvest", 93M11", 7,0,13 96.44450,41,73850,51,10,2,134010791,72,72,87,6,53,33,1,0reenstar 2 Monitor, "F0:no	29.2 29.6 30.3 30.4 30.8 31.0 31.1 31.4 31.6 31.6 31.6 31.6 331.6 332.0 332.1 332.5 332.5 332.5 332.5 332.8 332.8 332.8 332.8 332.8 332.8 332.8 332.8 332.9 333.2 333.2 333.5 333.5 333.5 333.5 333.5 333.7 333.8 333.9 333.0

Estimating our Crop Yield

We need a little more information:

- Adjusting the crop moisture content to a marketable value
- What is the moisture content for that?
- We know our mass flow rate (lb/sec) but we want bushels...we need to estimate the density

Grain	Moisture (%)	Grain Density (Ib/bu)	
Corn	15	56	
Soybeans	13	60	
Wheat	13.5	60	

Estimating our Crop Yield

We use the general formula for yield (bu/ac):

$$Yield \left(\frac{bu}{ac}\right) = (43,560) \left(\frac{m * t}{d * w * \rho}\right) \left(\frac{100 - MC_{harvest}}{100 - MC_{market}}\right)$$

Where:

m = mass flow rate (lb/sec) $MC_{harvest} = \% \text{ moisture content at harvest}$ $MC_{market} = \% \text{ marketable moisture content}$ t = logging interval (sec) d = travel distance (ft) w = header cut width (ft) $\rho = \text{grain density (lb/bu)}$ $43.560 = \text{conversion from ft}^2 \text{ to acres}$

Estimating our Crop Yield-Example

The yield data output shows a mass flow rate of 15.1 (lb/sec) of corn at a moisture content of 19.3% when traveling 54 inches in a one second logging interval. The header cut width of the combine was 240 inches (8 row header at 30 inches). What is the resulting yield in marketable bu/ac?

Viold	(bu)	-(43560)	(m * t)	$(100 - MC_{harvest})$
пеш	$\left(ac \right)$	- (43,300)	$\left(d * w * \rho\right)$	$\left(\frac{100 - MC_{market}}{}\right)$

										CONDOL: NO.
	Α	В	С	D	E	F	G	Н	I.	at 1 0
1	Longitude	Latitude	Flow Rate (Ib)	Time (sec)	Logging Interval	Travel Distance (in)	Header Width (in)	Moisture (% wb)	Header Status	1 aline
	-93.00001	44.294522	6.52	1258824694	2	82	360	19.4	33	and an
	-92.999988	44.294525	11.46	1258824696	2	83	360	19.1	33	Hat Fur
1	-92.999961	44.294531	21.15	1258824698	2	87	360	19.3	33	
	-92.999895	44.294535	12.44	1258824712	2	103	360	19.4	33	18 11 1
	-92.99986	44.294535	23.41	1258824714	2	111	360	18.4	33	
	-92.999818	44.294534	33.95	1258824716	2	128	360	18.5	33	Star All
3	-92.999781	44.294533	28.98	1258824718	2	93	360	18.3	33	
9	-92.999743	44.294538	9.8	1258824732	2	118	360	19.6	33	ALC: UN
									234010 000 000 000 000	

Estimating our Crop Yield-Example

Let's start by putting in the MC market & density

- MC_{market} = 15 %
- Density = 56 lb/bu

$$Yield\left(\frac{bu}{ac}\right) = (43,560)\left(\frac{m * t}{d * w * 56}\right)\left(\frac{100 - MC_{harvest}}{100 - 15}\right)$$

Now the mass flow and logging interval

- Mass flow rate = 15.1 lb/sec
- Logging interval = 1 sec

$$Yield\left(\frac{bu}{ac}\right) = (43,560)\left(\frac{15.1 * 1}{d * w * 56}\right)\left(\frac{100 - MC_{harvest}}{100 - 15}\right)$$
Nebrased

Estimating our Crop Yield-Example

We can input our moisture content while harvesting:

• MC_{harvest} = 19.3 %

$$Yield\left(\frac{bu}{ac}\right) = (43,560) \left(\frac{15.1 * 1}{d * w * 56}\right) \left(\frac{100 - 19.3}{100 - 15}\right)$$

Finally, we can input our travel distance and header cut width...can't we? What about the units?

- Travel distance = 54 inches = 4.5 feet
- Header cut width = 240 inches = 20 feet

$$Yield\left(\frac{bu}{ac}\right) = (43,560)\left(\frac{15.1 * 1}{4.5 * 20 * 56}\right)\left(\frac{100 - 19.3}{100 - 15}\right)$$

Now we're ready!

= 123 bu/ac

Creating the Yield Map We really only need 3 pieces of information: Latitude Longitude Yield But, we have to have software (GIS) like SMS Legend Yield Wood 0 - 15 bu 16 - 30 bu/a 31 - 45 bu/ad Nebras 46 - 60 bu/a 1 000 >60 bu/s

Summary

- · Yield monitor components and their functions
- Importance of yield monitor calibration
- Estimating yield from the yield monitor output

