Nebraska On-Farm Research Network

UNL Corn Nitrogen Recommendation ±30 lbs at Sidedress

Protocol developed by: Dr. Charles Wortmann, UNL Extension Nutrient Management Specialist
Gary Zoubek and Keith Glewen, UNL Extension Educators

Objective: Verify the UNL N recommendation by comparing it to the UNL sidedress ±30 lb N/acre.

Rationale: UNL research consistently confirms that when N is considered to be non-limiting to crop growth, each addition of N fertilizer results in less yield gain. This results in lower N use efficiency and lower net return. This is attributed, at least partly, to the high N use efficiency possible with crops that have healthy and well-developed root systems efficient in nutrient recovery and have plants that are efficient in converting nutrients and carbohydrates to yield (i.e. internal or physiological efficiency). The UNL N recommendation has been validated for maximizing profitability for high yielding environments (i.e. >240 bu/ac), as well as lower yield environments over diverse production situations. However, many producers feel that N in excess of the recommendations is needed; this results in reduced profitability and more N loss to the environment. Additionally, applying a portion of total N fertilizer during the growing season (sidedress) has been shown to improve nitrogen use efficiency (NUE).

Procedure: This protocol assumes no substantial or unusual loss of N, and that the N already applied is less than the UNL recommendation. Sidedress application can be an especially efficient N management component if pre-plant application does not exceed 75 lb N/acre. This should supply adequate N until sidedress application while leaving a significant amount of N to be applied in-season. The sidedress application of N (UNLd) is the amount of N needed to make up the difference between N already applied and N recommended using the UNL N recommendation. N is applied at V8 or later. The three treatments in these trials are:

Treatment 1: UNLd (Sidedress N to make up difference between early season N applied and total UNL N recommendation)
Treatment 2: UNLd amount +30 lb/acre
Treatment 3: UNLd amount -30 lb/acre

**This study may be simplified by eliminating treatment 3.

The UNL nitrogen rate can be determined using the following spreadsheet (use the tabs at the bottom of the spreadsheet for help and instructions) or visit www.cropwatch.unl.edu/farmresearch and click on the research protocols page.

Treatment Design: The following is an example treatment design for this trial. A total of 5 replications should be implemented and harvested. The same hybrid and management practices (other than N) should be used across the entire study area.

***NOTE! When designing a nitrogen comparison you need to remember nitrogen is a mobile nutrient and corn roots will spread laterally (i.e. corn plants can take up N from up to a row away). Therefore, the width of the treatment strips shown below must take this into account and compensate for it. We compensate for this by allowing for a “buffer” between the different treatments. This “buffer” area is not used for the yield comparison. For example, if you have a 16 row nitrogen applicator and an 8 row corn head, you will need to harvest the center 8 rows of each 16 row treatment, leaving 4 rows on each side of each treatment strip as “buffer”. This area will be harvested but not included in the yields for statistical analysis of the treatments. The following layout demonstrates a 16 row applicator and 8 row corn head. If you have different equipment sizes you will need to adjust accordingly. If you have any questions about the treatment design when working with N, please contact the Nebraska On-Farm Research Network.
<table>
<thead>
<tr>
<th>Replication</th>
<th>N Application</th>
<th>Harvest</th>
</tr>
</thead>
</table>
| Replication 1 | (16 rows) Treatment 2: UNLd + 30 lb/acre | ←4 rows buffer
| | | ← Record Yield from center 8 rows
| | | ←4 rows buffer
| | | ←4 rows buffer
| Replication 2 | (16 rows) Treatment 1: UNLd | ←4 rows buffer
| | | ← Record Yield from center 8 rows
| | | ←4 rows buffer
| | | ←4 rows buffer
| Replication 3 | (16 rows) Treatment 3: UNLd – 30 lb/acre | ←4 rows buffer
| | | ← Record Yield from center 8 rows
| | | ←4 rows buffer
| | | ←4 rows buffer
| Replication 4 | (16 rows) Treatment 2: UNLd + 30 lb/acre | ←4 rows buffer
| | | ← Record Yield from center 8 rows
| | | ←4 rows buffer
| | | ←4 rows buffer
| Replication 5 | (16 rows) Treatment 3: UNLd – 30 lb/acre | ←4 rows buffer
| | | ← Record Yield from center 8 rows
| | | ←4 rows buffer
| | | ←4 rows buffer
| | (16 rows) Treatment 1: UNLd | ←4 rows buffer
| | | ← Record Yield from center 8 rows
| | | ←4 rows buffer
Grower Requirements:

1. Flag or mark GPS location of each treatment.
2. Provide all necessary inputs for crop production.
3. Complete a background agronomic form about site and practices.
4. Collect yield data and grain moisture with weigh wagon or yield monitor. If using yield monitor, please designate a separate “load” for each treatment and set up separate “products” names for each treatment harvested. Yield monitor must be well calibrated. Contact UNL Extension if assistance with this process is needed.
5. Collect stand counts at harvest. Each treatment in all replications should have a stand count recorded. It is recommended that at least 3 counts be averaged together for each reported stand count.
6. Submit harvest data to UNL Extension within 30 days of harvest or by Dec. 15 of the harvest year.
7. Allow UNL Extension to use submitted and collected data for research, educational, and informational purposes.

Nebraska On-Farm Research Network will:

1. Provide technical assistance in setting up replicated and randomized experimental design.
2. Provide assistance upon request with treatment implementation, flagging, stand counts, stalk rot tests, and recording yield.
3. Analyze raw data using statistical analysis and provide this information to the grower.

For assistance with studies, please contact the Nebraska On-Farm Research Network Coordinators:
Keith Glewen: kglewen1@unl.edu or 402-624-8005
Laura Thompson: laura.thompson@unl.edu or 402-624-8033
Or your local educator

Disclaimer: The Nebraska On-Farm Research Network does not endorse the use of products tested in on-farm replicated strip trials. While treatments are replicated within trials and may be replicated across multiple sites under various conditions, your individual results may vary.