Sorghum Production For Maximum Yields

Kraig Roozeboom Agronomy Extension Crop Production/Cropping Systems

Outline

- Yield formation
- Hybrid selection
 - Maturity vs. growing season
 - Seed and plant color
 - Resources/tools
 - Planting
 - Populations
 - Row spacing
- Tillage and rotation

Sorghum Yield Formation

Vegetative

and tread

Growth stage	Days after emergence	Identifying characteristic
0	0	Emergence – coleoptile visible at soil surface
1	10	3 leaf collars – growth rate depends on temperature
2	20	5 leaf collars – rapid root development, growing point below soil surface
3	30	Growing point differentiation $- \sim 8$ leaf collars (7 to 10), rapid growth, nutrient uptake, and stem elongation

2,4-D at V5 to V6

Reproductive

Growth stage	Days after emergence*	Identifying characteristic
3	30	Growing point differentiation $- \sim 8$ leaf collars (7 to 10), rapid growth, nutrient uptake, and stem elongation
4	40	Flag leaf visible – final leaf visible in whorl, head developing
5	50	Boot – head extended into flag leaf sheath, all leaves expanded, max. light interception, head size determined
6	60	Half bloom – half of plants at some stage of bloom, half of DM accumulated

Sorghum Ergot

Grain Fill and Maturity

Growth stage	Days after emergence*	Identifying characteristic
7	70	Soft dough – rapid grain fill, from leaves and stalk
8	80	Hard dough – nutrient uptake complete, but DM at 75%
9	90	Physiological maturity – max. DM accumulation, formation of black layer

Sorghum Yield Formation

- Need warm temperatures and minimal weed competition for good early growth.
 - Root system, early (productive) tillers
 - Starter fertilizers especially helpful with early and/or no-till planting
- Head forms during 30 days before bloom.
 - Head size is determined before bloom
 - Be careful with herbicide applications
- Pollination can be affected by cool temperatures, or hot, dry winds
 - Seed set is determined during bloom (or maybe just before bloom)
 - Ergot, sorghum midge can reduce seed set
 - Grain fill is very rapid soon after bloom.
 - Seed size is determined during grain fill
 - Grain fill saps stalk making it susceptible to rots
 - Need adequate fertility for max yield
 - Need healthy leaves for max yield (sooty stripe, greenbug, etc.)

Hybrid Maturity and Year

2004-2006 (ok) 2007 (good)

Barney Gordon, K-State Research & Extension, Belleville

Hybrid Maturity and Planting Date Scandia 1994-1996

Barney Gordon, K-State Research & Extension, Scandia

Hybrid Maturity and Planting Date St. John 1993-1995

Probability of Sorghum Maturing Before a Freeze

Plant and Seed Color Effect on Laboratory Germination and Vigor

Plant and Seed Color Effect on Field Performance

Hybrid Selection Summary

- Fit hybrid maturity to available growing season and soil moisture
- Seed and plant color may influence germination and emergence, but hybrid and seed lot are more important
- Select high-yielding hybrids that resist stalk rots and stand well
- Use multiple sources of information to document hybrid performance over several locations and years

Hybrid and Plant Population Effects on Irrigated Grain Sorghum Yield

Hybrid Maturity and Population 2005 and 2006

160 150 acre 140 **Bushels per DKS 36-00** 130 120 **DKS 42-20** 110 **DKS 53-11** 100 90 80

28000 36000 44000

Barney Gordon, K-State Research & Extension, Belleville

Irrigation and Plant Population Effects on Grain Sorghum Yield, Scandia 1991

Plant Population Effect on Sorghum Yield

Plant Population Effect on Sorghum Yield, Belleville 1996

Population Summary/Conclusions

- ~ 40,000 plants/acre sufficient for Hutchinson
- 50,000 to 60,000 plants/acre sufficient for Manhattan, Missouri and Scandia dryland or limited irrigation
- 75,000 to 80,000 plants/acre sufficient for ≥2 irrigations and med-full season hybrids
- May need >80,000 plants/acre with irrigated earlymedium maturity hybrids
- Fuller maturity hybrids maximized yield at lower populations than early-med hybrids (if full growing season was available)
- Narrow rows (<30") were more responsive to population

Row Spacing Effect on Sorghum Yield – 16 Studies

Row Spacing Effect Kansas Summary

Planting Date and Row Spacing Effect on Sorghum Yield (1997-1999)

I Card

Row Space (inches)	Late May	Late June
30	135	115
15 Barney Gordon, K-State Resear	132 ch & Extension, Scandia	125

Skip-Row Planting

P2S2, 2007 Tribune, KS; Alan Schlegel and Lucas Haag

Skip-Row Planting

P2S2, 2008 Tribune, KS; Alan Schlegel and Lucas Haag

Clump Grain Sorghum Planting

Tribune, KS; Alan Schlegel and Lucas Haag

Planting Geometry Affects Tillering

Tribune, KS; Alan Schlegel and Lucas Haag

Row Spacing Summary/Conclusions

- Narrower rows may provide the opportunity to capture greater yields at higher populations in favorable environments (>heads/plant, larger heads)
- Narrow rows may be a detriment in dry environments
- Narrow rows may be more advantageous at later planting dates
- Hybrid maturity usually had no effect on row spacing response
- Select hybrids with resistance to stalk rots and excellent standability for narrow rows
- Skip row or clump planting may have merit in dry environments

Rotation and Tillage

The Laster State

Rotation and N Effect on Sorghum Yield (7 years)

Rotation and N Effect on Sorghum Yield (20 years)

Preceding Crop Effect on Sorghum Yield

Rotation and tillage effects on 10year average winter wheat yield.

Grain Sorghum and Wheat Response to Rotation – 11 Years, Tribune, KS

Net Returns for Grain Sorghum, Wheat Rotations – 11 Years, Tribune, KS

Short-run prices

Alan Schlegel, Tribune; Troy Dumler, Garden City

Grain Sorghum Response to Tillage 31 Years, Manhattan, KS

Grain Sorghum Response to Tillage W-S-F, Tribune, KS

Grain Sorghum Response to Tillage W-S-F, Tribune, KS

2001 2002 2003 2004 2005 2006 2007

Alan Schlegel, Tribune

Net Returns for Different Tillage Systems in W-S-F, 2001-2007 Tribune, KS

Dryland Sorghum Yield Increases Over Time, Bushland, TX

- Yields increased 0.8 bu/a/year over 50 years
- Improved hybrids accounted for about 33% of yield increase
- Soil water content at planting was single largest other factor contributing to yield increases – related to reductions in tillage and increased surface residue

(P.W. Unger and R.L. Baumhardt. 1999. Factors related to grain sorghum yield increases: 1939 through 1997. Agron. J. 91:870-875.)

Rotation and Tillage Summary

- Sorghum almost always yields more when in rotation, regardless of N rate.
- Increasing the number of years between sorghum crops can enhance "rotation effect".
- Rotation is critical for no-till success.
- No-till response can improve over time.
- No-till can save enough soil moisture to make a BIG yield difference.

Questions?