Nitrous Oxide and Nebraska Crop Production

Charles Wortmann
Terry Loecke
Richard Ferguson
Gary Hergert
Charles Shapiro
Tim Shaver
Climate Change (global warming; climate weirdness)

- Is there a human factor?
- We will probably have to act on this even if we don’t believe that there is human influence
 - need to be informed
 - better to be proactive
Nitrous oxide (N_2O), water vapor, carbon dioxide (CO_2), and methane are gases in the atmosphere that absorb and emit heat (Infrared radiation) back to earth.

A ‘greenhouse effect’

Water vapor is the most important of these
 – not affected globally by human activity
 – Increases with higher temperatures
Nitrous oxide

- The CO$_{2e}$ of N$_2$O is 298 to 310. One ton of N$_2$O in the atmosphere = ~300 t CO$_2$
N$_2$O coupled to nitrogen application

Del Grosso et al., 2006
Nitrous oxide

• Agriculture
 – Main source of N$_2$O emission in US
 – Soil processes
 • denitrification
 • incomplete nitrification
 – animal manure

• 40-50% of N2O emission globally is from natural sources
Denitrification

• Reduces nitrate (NO\textsubscript{3}⁻) primarily to N\textsubscript{2}, but with some N\textsubscript{2}O emission

• Associated with
 – poor soil aeration
 – abundant decomposable organic material, e.g. fresh crop residues
 – Temperature sensitive

• Therefore, less with well-drained compared with poorly drained soil
Incomplete nitrification

• ammonium (NH$_4^+$) is converted to nitrite but not all nitrite (NO$_2^-$) is converted to nitrate (NO$_3^-$) with some N$_2$O emission
 – probably the main source of N$_2$O emission
 Nebraska crop production
 – Increased with
 • more soil NH$_4^+$ that undergoes nitrification
 • low soil aeration
 • warm temperature
Animal manure

- <10% of agricultural N\textsubscript{2}O emission
- much from urine-N with high protein diets
Emission from Nebraska Cropland

- N_2O emissions in eastern Nebraska were found to be 4 - 5.5 lb $\text{N}_2\text{O}/\text{ac/yr}$
 - Less for rainfed
 - More for continuous corn
- 5 lb $\text{N}_2\text{O}/\text{ac} = \sim 1500 \text{ lb/ac}$
 $\text{CO}_2 = \text{CO}_2$ from $\sim 75 \text{ gal gasoline}$
Do we have some no cost or low cost opportunities?

- Potential for win-win-win solutions
Rotation vs monoculture

<table>
<thead>
<tr>
<th>Profit</th>
<th>NO$_3^-$-N leaching</th>
<th>NH$_3^+$-N volatiliz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N erosion/ runoff</th>
<th>N$_2$O emission</th>
<th>Denitrification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Var/Var</td>
<td>Var/Var</td>
<td>Var/Var</td>
</tr>
</tbody>
</table>

Results of N$_2$O research

• Less with corn-soybean rotation compared with continuous corn in NE and IA studies
• Variable in others
• 3-6 wins; possibly no cost!!
No till vs tillage

<table>
<thead>
<tr>
<th>Profit</th>
<th>NO$_3^-$-N leaching</th>
<th>NH$_3^+$-N volatiliz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Var</td>
<td>Var§</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N erosion/ runoff</th>
<th>N$_2$O emission</th>
<th>Denitrification</th>
</tr>
</thead>
<tbody>
<tr>
<td>/Var</td>
<td>Var</td>
<td>Var</td>
</tr>
</tbody>
</table>

Results of N$_2$O research

- §Var: often benefits depend on the level of risk of N loss to a process!!!
- Less emission with no-till in Colorado, but more in Canada
- Tillage effect varies
- 1-5 wins; often with no cost
Economic Optimal N Rate

N\textsubscript{2}O emission relative to yield
Results of N_2O research

- N rate is the best predictor of emissions
- 1-4% of applied N equivalent found to be emitted across Corn Belt
- Under study by UNL
- 6 wins; no cost!!!
Anhydrous NH$_3$ vs other N fertilizers

<table>
<thead>
<tr>
<th>Profit</th>
<th>NO$_3^-$-N leaching</th>
<th>NH$_3^+$-N volatiliz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Var</td>
<td>Var</td>
<td>down arrow</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N erosion/runoff</th>
<th>N$_2$O emission</th>
<th>Denitrification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Var</td>
<td>up arrow</td>
<td>Var</td>
</tr>
</tbody>
</table>

Results of N$_2$O research

- MN studies:
 - 50% more emission with AA injected compared with urea broadcast and incorporated
 - more with AA compared with CaNO$_3$
 - more with urea than with UAN
 - Switch from AA; some other negative effects
Injected vs surface

<table>
<thead>
<tr>
<th>Profit</th>
<th>NO$_3^-$-N leaching</th>
<th>NH$_3^+$-N volatiliz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Var</td>
<td>Var</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N erosion/ runoff</th>
<th>N$_2$O emission</th>
<th>Denitrification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Var</td>
<td>Var</td>
<td>Var</td>
</tr>
</tbody>
</table>

Results of N$_2$O research

- Mixed results: reduced emission with injection in MO, but increased in CO
- Inconclusive; under study by UNL
In-season N application

<table>
<thead>
<tr>
<th>Profit</th>
<th>NO$_3^-$-N leaching</th>
<th>NH$_3^+$-N volatiliz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Var</td>
<td></td>
<td>Var</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N erosion/ runoff</th>
<th>N$_2$O emission</th>
<th>Denitrification</th>
</tr>
</thead>
</table>

Results of N$_2$O research

- Less emission expected with sidedress application and fertigation
- Under study by UNL
- Decreased emission with 4 to 6 wins, probably no loss of profit for situations of high risk of leaching or denitrification loss
Inhibitors, controlled release: also placement and type; continuous corn, CO

Cumulative N₂O-N flux, g N/ha

N rate = 202 kg N/ha

Urea, ESNssb, UAN, SuperU, ESN, UAN+AP, Check

Halvorson and Delgrosso, ARS
Nitrification inhibitors

<table>
<thead>
<tr>
<th>Profit</th>
<th>NO$_3^-$-N leaching</th>
<th>NH$_3^+$-N volatiliz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Var</td>
<td>----</td>
<td>----</td>
</tr>
</tbody>
</table>

N erosion/ runoff

<table>
<thead>
<tr>
<th>N$_2$O emission</th>
<th>Denitrification</th>
</tr>
</thead>
<tbody>
<tr>
<td>----</td>
<td>----</td>
</tr>
</tbody>
</table>

Results of N$_2$O research

- Use of a nitrification plus urease inhibitor reduced emission by 40% in CO
- Under study by UNL
- 3-4 wins; probably no loss of profit for situations of high risk of leaching or denitrification loss
Controlled released N fertilizer

<table>
<thead>
<tr>
<th>Profit</th>
<th>NO$_3^-$-N leaching</th>
<th>NH$_3^+$-N volatiliz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Var</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N erosion/ runoff</th>
<th>N$_2$O emission</th>
<th>Denitrification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Var</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results of N$_2$O research

- Reduction in emission varied across four studies with decreases up to 50%
- Under study by UNL
- 4 to 6 wins; effect on net profit will depend on
 - risk of N loss to one or more processes
 - the cost of controlled release N
Other practices

• Other practices have been found to have little or inconsistent effect on N$_2$O emission
 – Spring compared with fall application
 – Cover crops
Best no- or low-cost win-win-win N$_2$O opportunities

- Rotation
- EONR
- In-season N application
- Inhibitors where leaching or denitrification risk is high
- Controlled release fertilizer: depends on cost and potential for other losses
Variability in effectiveness and net cost

- Risk of N_2O emission as well as N loss to different processes varies with field and management conditions
- We are developing an easy to use N management tool
 - assessment of N loss risk to different processes
 - evaluate effects of alternative practices
 - Using ‘saved’ money; need more money to complete
Opportunities

• Some N$_2$O reduction practices have multiple benefits, often with little or no loss in profit

• Good N loss risk assessments can greatly improve decisions on alternative practices