Switchgrass and Bioenergy Crop Logistics

Stuart Birrell, Associate Professor
Department of Ag and Biological Engineering,
Iowa State University

Acknowledgement
Kevin J. Shinners
Professor of Agricultural Engineering
Department of Biological Systems Engineering
University of Wisconsin
Storage and Transportation Logistics

Scale of feedstock supply chain challenges

- Present Agricultural Grain Production (Corn, Wheat, Soybean).
 - Grain Supply Chain, 488 million tons (Bulk density 46 lb/ft3, 775 kg/m3)
 \rightarrow 786 m yd3 (570 m m3)

- DOE Billion Ton Study
 - Agricultural Residues and Perennials, 802 million tons (730 m tonnes)
 - Forest Products, 368 million tons (335 m tonnes)
Storage and Transportation Logistics

Scale of Cellulosic feedstock supply chain (50 m gal refinery)

- Present Grain Ethanol Plant (50 Million Gals/year).
 - Assuming 2.8 gal/bu yield,
 - Grain Supply Chain, 0.5 million tons (Bulk density 46 lb/ft³)
 → 0.82 millions yd³ → 20000 trucks/year (25 ton/truck) → 56 trucks/day (25 ton/truck)

- Cellulosic Ethanol Plant (50 Million Gals/year).
 - Assuming 75 gal/ton yield,
 - Ethanol Supply Chain, 0.67 million tons
 - Assume 53 ft. truck filled to capacity (8ft x 9 ft. x 53 ft. = 141 yd³)

 - Raw Bulk density 3 lb/ft³
 → 444.5 million yd³ → 116000 trucks loads /year (6 ton/truck)

 - Bale density 10 lb/ft³
 → 133.3 million yd³ → 35 000 trucks/year (19 ton/truck)

 - Pellet density 40 lb/ft³
 → 33.3 million yd³ → 27 000 trucks/year (25 ton/truck)
Storage and Transportation Logistics

Biomass Harvest

Field Collection Logistics

Field and Satellite Storage

Feedstock Receiving

Delivery Logistics
Feedstock Supply Chain will require the harvest, handling, pre-treatment, transportation and storage of large quantities of low-density feedstock material

- Increases in feedstock value density should occur as early as possible in the supply chain.
- Energy efficient, cost effective, Increase efficiency of downstream processes.

- **Harvest Technologies**
 - Harvest Capacity and costs
 - Capital Investment costs, Flexibility of machinery use
 - Seasonal Labor requirements, Timeliness of operations

- **Transportation Distance and Costs**
 - Local Farm Storage, Satellite Storage Systems, Central Storage Systems
 - Transportation Logistics and Infrastructure
 - Field Transportation Logistics, Biorefinery Transportation Logistics, Regional Transportation and Infrastructure

- **Storage System**
 - Wet Storage vs. Dry Storage,
 - Preprocessing during storage (Increase Energy Density / Value)

- **Material Transfer**
 - Bulk Material System vs. Unit Operations System
Development of Feedstock Supply Chain

• **Producer Acceptance**
 • Technology adoption
 • adoption curve must be dramatically shifted
 • Risk management
 • Timeliness of operations
 • Demonstration of a viable feedstock supply chain
 • Scale consistent with farm operations
• **Sustainable Production Systems**
 • Soil Quality, Water Quality, Environmental Concerns (Public Perception)
Biomass Supply Chain Criteria

Feedstock Supply Chain will require the harvest, handling, pre-treatment, transportation and storage of large quantities of material

• Sufficient quantity to reduce supply risk to bio-refinery
 • Pre-processing to Uniform Commodity format
 • Seasonal and regional shortages (drought years?)
 • Transportation limitations

• Consistent quality of product
 • Development of standards for sampling and quality determination
 • Payment on Dry Matter basis “or” Clean Dry Matter Basis

• Timely Operations and Delivery
 • Harvest window, Storage time
 • Centralized storage vs. satellite storage vs. field storage

• Sustainable and Economically viable
 • Producer, Custom Operator or Intermediate business
 • Biorefinery

• Maximize Bulk and Energy Density as close to harvest as possible
 • Increase bulk density, reduce moisture content
 • Conversion as distributed as possible
Present Mechanical harvesting and logistics are sufficient
 • Scale and cost structure is very different to animal forage model?
 • Cost structure very different
 • Industrial scale supply chain verse agricultural supply chain
 • Total cost per ton and yields will be paramount and quality is low priority ?
 • Variable quality will increase bio-refinery capital costs
 • Inconsistent quality will most likely affect refinery efficiency
 • Moisture Content not important can be managed at field or by preprocessing ?
 • Max yield harvest window and regional climate may prevent field drying
 • Most pre-processing systems will still require significant storage periods
 • Transportation of water is lost opportunity
 • Biorefinery waste water management is a major cost
Storage and Transportation Logistics

Biomass Harvest

Field Collection Logistics

Field and Satellite Storage

Feedstock Receiving

Delivery Logistics
Switchgrass Harvest and Storage

Timing and Frequency of Harvest
• Maximum Yields Occur for single harvest after anthesis
 • Harvest after killing frost could conserve nutrients
 • Single Harvest provides maximum yields
 • Delay of harvest until spring results in yield reductions of 20-40 % (Shinners et. Al, 2010, Adler et al 2006)

Harvest Methods
• Large Round Baler
 • Lower capital costs, slightly lower density
 • Capacity of approximately 10 ton/hr., requires 75-100 hp power unit
 • Truck capacity approximately 11 dry tons/truck load
• Large Square Baler
 • High capital costs, Density 10-12 lb/ft3
 • Capacity of approximately 15 ton/hr., requires 180-200 hp power unit
 • Truck capacity approximately 21 dry tons/truck load
• Loafer/Stack Wagon
 • Low cost, low density
 • Lower power requirement
 • Short duration haul distances only
• Future Large Anaerobic Modules
 • Storage Loss
Switchgrass Harvest and Storage

Storage Methods

• **Large Round Bales**
 - In Buildings, DM losses 1- 4%
 - Under Tarp, DM losses 3- 10%
 - Exposed, DM losses 5- 13%

• **Large Square Baler**
 - In Buildings, DM losses 2- 8%
 - Under Tarp, DM losses 6- 25%
 - Exposed, DM losses 7- 39%

• **Anaerobic Storage**
 - Bulk Silo, Ag-Bag, and Bale Wrap (cost approx. $9/ton)
 - DM losses 1- 5%

Building Cost approx. $10-12 square ft.

Total Harvest and Storage Cost Approx. $14-$24 /ton (Kumar et al., 2007)
cenusa: Feedstock Logistics Objectives

• Broad Objectives
 ▪ Development of systems and strategies to enable economic harvest, transportation, and storage of perennial grass feedstock

• Participants
 Kevin J. Shinners
 Professor of Agricultural Engineering
 Department of Biological Systems Engineering
 University of Wisconsin

 Stuart Birrell, Associate Professor
 Department of Ag and Biological Engineering,
 Iowa State University
cenusa: Feedstock Logistics Objectives

- Objectives
 - Harvest
 - Improve the field drying rate of perennial grasses to enhance product quality and reduce losses.
 - Development of standardized packages/modules
 - Quantify/reduce energy expenditure.
cenusa: Feedstock Logistics Approach

• Harvest, Improving Field Drying:
 - Develop mechanisms and systems to increase the crops specific surface area to increase rate and extent of moisture egress from the plant during field drying
cenusa: Feedstock Logistics Approach

• Harvest, Standardized Packages/Modules:

 ▪ Develop systems to create large standardized modules of compacted biomass that serve as both storage and transport devices

 ▪ Investigate large round modules.
 ▪ Investigate large tube modules.
Program Area No. 3 Approach

• Harvest: Quantify/Reduce Energy Expenditures:
 ▪ Quantify and reduce energy of size-reduction at harvest
 ▪ Compare baling versus chopping.
 ▪ Compare size-reduction locations:
 ✓ In-field.
 ✓ Post-storage.
cenusa: Feedstock Logistics Objectives

• Objectives

 ▪ Storage

 ▪ Development and evaluation of densification, stabilization and storage technologies for reduction of feedstock supply chain costs.
 ▪ Quantify storage characteristics
 ▪ Comparison of dry and moist storage systems
cenusa: Feedstock Logistics Approach

- Storage Characteristics:
 - Comparison of storage systems to improve storage stability and reduction of feedstock supply chain costs.
 - Compare outdoor bale schemes:
 - Film wrapped, tube wrapped, tarped.
 - Investigate tube module storage of dry, chopped grass.
 - Investigate anaerobic storage of moist, chopped grass.
cenusa: Feedstock Logistics Objectives

- Objectives
 - Transportation and Logistics
 - Develop more efficient handling systems
 - Integrated feedstock supply chain and logistics cost analysis.
 - Evaluation of the effect of distribution of energy crop production by landscape position on harvest and logistical costs
cenusa: Feedstock Logistics Approach

• Logistics; More Efficient Handling Systems:
 ▪ Develop systems to create large standardized modules of compacted biomass that serve as both storage and transport devices
 ▪ Compare large-scale handling systems:
 ✅ Multi-bale loading.
 ✅ Module mover.
Program Area No. 3 Approach

- Logistics; Evaluate of feedstock supply chain logistics:
 - Develop models of interaction between producer demographics, scale, spatial distribution of material, and yield.
 - Evaluation of the effect of distribution of energy crop production by landscape position on harvest and logistical costs.
Program Area No. 3 Outcomes

• Provide a more energy-efficient and weather-independent method of harvest.

• Provide more energy- and cost-efficient logistics systems, yielding a more positive energy balance.

• Projection of minimum production scale that will be economical.

• Development of technology and recommendations for sustainable and cost effective feedstock supply chains

• Development of optimal systems for feedstock supply chains, including validation of standardized preprocessing systems for feedstock supply chains.