Nursery Operations

Part 1
Fundamentals of Seedling Nursery Management in Afghanistan

2009
27a

This training was prepared by the U.S. Department of Agriculture (USDA) team of Sylvana Li (Branch Chief, Rural Development and Natural Resources - USDA Foreign Agricultural Service, email: Sylvana.Li@fas.usda.gov), Matt Murphy, and David Gallagher (both Development Resources Specialists - USDA Foreign Agricultural Service, emails: Matt.Murphy@fas.usda.gov, david.gallagher@fas.usda.gov), George Hernandez (Forester - USDA Forest Service, email: George.Hernandez@usda.gov), and Jon Fripp (Civil Engineer - USDA Natural Resources Conservation Service, email: Jon.Fripp@ftw.usda.gov). The USACE provided funding support for the USDA team.

www.rngr.net

Southern Pine Nursery Manual
Afghan Nursery Manual
Native American Nursery Manual
Container Tree Nursery Manual
Woody Plant Seed Manual
A Technical Guide for Forest Nursery Management In the Caribbean and Latin America
Seed Sources/Collection
(Mother trees will produce similar offspring)

1. Collect from several healthy (20) trees in an area
2. Maintain Seed Production Areas
3. Trees should be free of disease and insect damage
4. Nearly mature
5. Collect seed as soon as it is ripe
6. Collect from trees that will meet planting goals (fruit production, growth rate, drought-tolerance, form)
7. Collect fruits through all parts of tree (top, middle, bottom)

Ripe Seed:
Seed embryo fills the cavity
Seed storage tissue firm and white
Seed storage tissue like coconut meat
Seed coat firm, brown/black in color
Seed coat easy to separate
Seed coat brown in color

Unripe Seed:
Undeveloped seed embryo
Seed storage tissue soft
Seed coat soft, light brown in color
Seed coat attached to embryo

FIGURE 3. Mature (top) and immature (bottom) interior spruce seeds.
Seed Processing: Dry Fruits (cones)

1. Collect cones when seed is ripe, prior to cone opening
2. Make collection when cones are dry on the tree
3. Make sure cones are dry and cool during transport to nursery
4. If *Pinus halapensis* cones require heat to open, dip cones in hot water (55 C for 5 minutes)
5. Set out to dry in the sun on drying screens

Seed Processing: Dry Fruits (cones)
(Use only the best seed for production)

1. Once cones open, tumble to remove seed
2. Clean seeds by blowing or winnowing
3. Immerse seeds for short period of time in water
4. Throw out seeds that float
5. Drain water, re-dry seeds that sink on drying screens
6. Sun dry until dry, weigh and make ready for storage
Seed Processing: Dry Fruits (Pods)
(Use only the best seed for production; make sure seed remains during processing)

1. Make collection when pods are dry on the tree.
2. Make sure pods will remain dry during transport to nursery.
3. Allow pods to dry on trays in the sun.
4. When fully dry, place pods inside burlap sack.
5. Fill bag to ¼ full
6. Tie bag off at the top.
7. Lay bag over flat, clean concrete surface.
8. Breaking pods by beating sack, or walking over it
9. Run broken pods, seed over screen to separate seed from pod.
10. Separate fine trash from seed by winnowing.
11. Sun dry until dry, weigh and make ready for storage

Seed Processing: Dry Fruits (Fraxinus)
(Use only the best seed for production; make sure seed remains dry to prevent molding)

1. Make collection when seed is dry on the tree
2. Make sure seed will be dry and cool during transport
3. Set out to dry in the sun on drying screens
4. Sun dry until dry, weigh and make ready for storage
Seed Processing: Fleshy Fruits (apricots)
(Use only the best seed for production)

1. Begin cleaning soon to prevent fruit from fermenting (heat)
2. Immerse in water until fruit becomes soft (1-2 days)
3. Carefully scrape, crush, rub seeds with separate seed from fruit
4. Remove all floating seeds and fruit
5. Drain off water
6. Re-wash seeds that sink
7. Air-dry until seed is dry (1-2 days)
8. Re-clean seed by winnowing

Seed Drying
(Seed not properly dried will germinate/deteriorate in storage)

1. Spread seed out in thin layer on screen
2. Stir and turn seed often during drying for uniform drying
3. Dry in shade during the heat of day.
4. Protect seed from rodents, birds during drying process
5. Drying may take 1-3 days depending upon how wet they are.
Seed Storage

(Open storage will reduce viability by half within 8 months; viability remains high when seed moisture and temperatures are kept low)

1. Store only new, mature, healthy and well-dried seed
2. Keep them in dry and cool place to extend viability
3. Store in clean, air-tight containers (tin cans, glass, plastic)
4. Put moisture-absorbing material in container (dry charcoal, small pieces of newspaper)
5. Do “cut test” before storing
6. Protect seed from insects and fungi (mix with dry ash)
7. Protect seed from rodents during storage
8. Open seed container only when necessary
9. If seed is processed properly, there is no need to use fungicides

Labeling of Seed

1. Label inside seed container
2. Label outside seed container
3. Written inventory maintained in Seed/Nursery Office

Seed Inventory

Guzargah Nursery

<table>
<thead>
<tr>
<th>Identification Number</th>
<th>Afghan Name</th>
<th>Latin Name</th>
<th>Yr Collected</th>
<th>Source</th>
<th>Seeds / KG</th>
<th>Germ</th>
</tr>
</thead>
<tbody>
<tr>
<td>07001</td>
<td>Najo</td>
<td>Pinus halepensis</td>
<td>2007</td>
<td>Kabul Uni</td>
<td>25,000</td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Addition (KG)</th>
<th>Subtraction (KG)</th>
<th>Balance (KG)</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>13/9/2007</td>
<td>100</td>
<td></td>
<td>100</td>
<td>Cone Collection</td>
</tr>
<tr>
<td>20/9/2007</td>
<td>20</td>
<td>80</td>
<td></td>
<td>Sow at Guzargah</td>
</tr>
<tr>
<td>21/9/2007</td>
<td>5</td>
<td>85</td>
<td></td>
<td>Rtn from Guzargah</td>
</tr>
<tr>
<td>1/10/2007</td>
<td>25</td>
<td>60</td>
<td></td>
<td>Sow at Paghman</td>
</tr>
</tbody>
</table>
Repellants/Barriers
(Make seed unattractive or inaccessible to predators)

1. Determine extent of damage through estimation (randomly sample of sowing area).
2. Identify predator.
3. Erect physical barriers to separate predator from seed source
4. If not possible, treat seed w/ repellant specific to predator
5. Pepper repellant recipe:
 • 4 liters water
 • 30-60 milliliters finely ground hot pepper
 • 30-60 milliliters liquid hot pepper sauce
 • 30-60 milliliters school glue (glue that can be washed off with water)

There are 3 common methods of nursery production.

Container Balled & Burlap Bareroot
Polybag Seedling Production

1. Polybag size minimum 10 cm x 20 cm.
2. Use polybags that will remain intact for at least two years.
3. Make sure there are drain holes in the sides and bottom of the bag.
4. Soil mix to contain equal parts sand, compost and soil (minimum pore space = 50%)
5. Compost (sawdust, leaves, dung) completely decomposed (>1 yr old)
6. If sow seed in the fall, keep seed moist for natural stratification.
7. If sow seed in the spring, use stratified seed (refer to Seed Handbook)
8. Sowing depth 2 times diameter of seed.

Polybag Conifer Seedling Production (Cond.)

9. Once germination is complete, thin to only one seedling/bag; no empty bags.
10. Place bags into pre-dug trenches for root protection.
11. Keep seed moist during germination
12. Keep seedling well-watered during growth and development.
13. Provide shade during the heat of the summer.
Polybags have a large volume and can be heavy when filled with native soil.

Using a soil less medium will reduce weight and conserve precious topsoil.

Newer polybags can be purchased impregnated with copper to reduce spiraling.
Gravel base to ensure drainage and to promote root pruning.

Textile cloth weed barrier.

A typical polybag nursery bed showing a textile weed barrier and a 15 cm crushed rock base.

At least 15 cm of crushed rock.

Gravel base to ensure drainage and to promote root pruning.

Crowding is a common mistake growers make with poly bags.

Crowding reduces cubic volume and decreases root growth.

Poor alignment causes drain holes to be plugged up and decreases root growth due to poor aeration.
One method to prevent crowding is to use a physical constraint to separate the polybags.

These polybags are separated using wooden stakes and rope.

Viewed from above.

These polybags are not crowded and have room to grow and develop.

Another advantage of using a constraint is that empty containers can be removed and containers with seedlings can be consolidated, thus reducing space.

During the hardening phase, spacing plants helps to prevent disease.
Proper placement of poly bags increases growth.

Proper spacing maintains cubic volume and can increase potential root growth.

Good alignment keeps drain holes open and promotes good drainage.

Pinus seedlings grown in polybags. Although seedlings tops look fine (photo 1), root spiraling (photo 2) can cause serious problems after seedlings are planted in the forest, orchard or landscape.
Water bottle Seedling Container

Why?
1. Readily available
2. Inexpensive
3. Potentially useful in all manner of species

How?
1. Remove bottle cap
2. Cut off bottom of container
3. Make 3-4 long, vertical slits length of bottle
4. Fill with soil
5. Seed
6. Irrigate

Water bottle Seedling Container

Principles:
1. Bottom hole allows for drainage (reducing salt accumulations).
2. Side slits reduce root spiraling.
3. Pruning of lateral and tap roots through aeration
4. Large top opening allows for development of large seedling diameter.
Waterbottle Seedling Container (Continued)

Principles:
5. Long container length allows for long root development
6. Smaller containers (0.5 l) for seedling production (1-2 years)
7. Larger containers (>1 l) for sapling production (> 2 years)

Making a pot from large leaves.
Bareroot & Balled Burlap Seedling Production

Grown in fields or beds.

Root systems are not kept intact.

Suited for producing large plants.

Soil Management
(needed for plant growth and development)

1. Fertile (suitable for agricultural crop production)
2. Well-drained (no standing water, salt accumulations)
3. Relatively level fields
4. Close to a clean, available water source
5. Site not susceptible to early or late season frosts
6. Rest fields every year or two
Site Preparation and Field Cultivation
(Soils must be well-cultivated for proper seed placement during sowing, for proper drainage, root development and weed control)

Primary (Prior to sowing to loosen soil and eliminate residue):
1. Break, loosen the soil to a depth > 30 cm
2. Remove vegetation
3. Done when soil is dry

Secondary (Prior to sowing to prepare seedbeds):
1. Break large soil blocks
2. Smooth, level soil surface for ease of sowing
3. Done when soil is dry

Tertiary (Cultivation during season):
1. Loose cultivation to a working depth of 3-5 cm
2. Aids in weed control
3. Breaks up soil surface to aid in irrigation infiltration
4. Breaks up soil surface to aid in root development
5. Soil can be moist

Seedbed Preparation
(Experience will determine best seedbed preparation for the site)

1. Flood Irrigation
 - Field to be cultivated to depth of >30 cm
 - Field to be level
 - Field to be smooth, free of vegetation, large blocks of soil

2. “Joya and Pushta” (Ditch and Mound)
 - Field to be cultivated to depth > 30 cm
 - Field to be level
 - Field to be free of vegetation, large blocks of soil
Seeding
(Seed requires combination of moisture and cool temperatures for germination)

1. Sow seed in the fall (November)
2. Stratify seed for spring sowing (Refer to Afghan Seed Maturation Table)
 - water soak seed for 24 hours in clean water
 - drain water
 - place plastic bag and place in refrigerator (2-5 C)
 - keep cool for required period of time (30 days+)
3. Sowing depth 2 times diameter of seed

Irrigation for Bareroot Seedlings
(For best seedling development)

1. Flood irrigation with clear, clean water
2. Measure moisture level at root zone before irrigating
3. Use “Feel and Appearance” test to determine need to irrigate
4. Avoid saturating soil (poor root development, salt build-up)
5. Roots need room to breath and grow
Seedling Harvest
(Careful handling will increase planting success)

1. Harvest seedlings/saplings when dormant (early spring)
2. Minimum root length 30 cm
3. Soil should be moist before and during harvest
4. Protect roots from drying at all times
5. Cover roots with moist soil until wrapped
6. Wrap roots to protect from drying
7. Plants trees as soon as possible after harvest

Seedling Shipment
(Careful handling will increase planting success)

1. Ship seedlings soon after harvest.
2. Keep plants protected from wind and sun during transport
3. Avoid storing petroleum products with seedlings
4. Keep roots moist during transport
5. If possible, avoid transporting during heat of the day
Seedling Planting
(Careful handling will increase planting success)

1. Keep roots moist and protected at all times during planting.
2. Soils should be moist at planting time.
3. Dig hole immediately prior to planting, large enough (deep and wide) to fit the tree’s roots.
4. Terraces may be necessary on steep slopes.
5. Make sure to remove the polybag completely.
6. If the tree’s roots are circling from the polybag, make 3-4 vertical cuts (1 cm deep) on the outside of the root mass.
7. Make sure tree’s roots are vertical in planting hole.
8. Plant sapling at proper depth (root collar at soil surface).
10. Make sure there are not air pockets in planting hole.
11. Leave shallow depression in planting hole to hold water.

Post-Planting Care
(Healthy trees will increase planting success)

1. Provide thorough soakings of water during dry periods (monthly)
2. Restrict grazing in planted areas
<table>
<thead>
<tr>
<th>Plantation Suitability Index for Afghanistan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Names</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Species</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Jujube</td>
</tr>
<tr>
<td>Rhus</td>
</tr>
</tbody>
</table>

Legend:
- **H** = High potential for Tree Growth and Development
- **M** = Moderate potential for Tree Growth and Development
- **P** = Poor potential for Tree Growth and Development
- **D** = Dry
- **E** = Even
- **W** = Wet
- **A** = Aeration
- **D** = Drainage
- **C** = Critical Bem
- **H** = Hardwood
- **L** = Lumber
- **S** = Salt
- **M** = Manganese

Notes:
1. Species marked with an asterisk (*) are considered to be the best potential for tree planting in Afghanistan. All have one or more characteristics that are highly critical for planting, survival, vigor, and growth of trees and shrubs.
2. Species marked with a double asterisk (**) are considered to be even more critical, having some combination of characteristics that may be critical for planting, survival, vigor, and growth of trees and shrubs.