How to Manage Sorghum for Peak Performance

2016 Sorghum Symposium
Grand Island, NE
January 21th

Brent Bean
USCP Agronomist
Why Sorghum

- Drought tolerant crop, but responds well to additional water
- Long planting window
- Rotation benefits for soybean
- Improved control of resistant weeds
- Lower input costs compared to many other crops
Compare Input Costs

Example: Seed Costs

<table>
<thead>
<tr>
<th>Sorghum</th>
<th>Corn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>Cost*</td>
</tr>
<tr>
<td>30,000</td>
<td>$5</td>
</tr>
<tr>
<td>60,000</td>
<td>$10</td>
</tr>
<tr>
<td>90,000</td>
<td>$15</td>
</tr>
</tbody>
</table>

* Based on 2015 TAMU AgriLife D-2 Enterprise Budgets

AMS Approved
Minimizing Crop Inputs in a Low Commodity Price Environment

- **Minimize seed costs**
 - Use lowest seeding rate to meet yield goal

- **Soil sampling and testing**
 - Including deep sampling for N

- **Maximize irrigation efficiency**
 - Timely application, efficient system

- **Weed control**
 - Compare costs of herbicides
 - Adjuvants – use only what is necessary and proven

- **Insect control**
 - Scouting and timely application is critical
Crop Water Use Efficiency of Corn, Soybean, and Sorghum under Dryland Conditions

Lawrence, NE

Source: Jenny Rees, UNL, Clay County
2009-2011 Seasonal Crop Water Use

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>22.0</td>
<td>127.2</td>
<td>5.8</td>
<td>23.3</td>
<td>101.2</td>
<td>4.3</td>
<td>14.5</td>
<td>97.5</td>
<td>6.7</td>
</tr>
<tr>
<td>Soybean</td>
<td>21.3</td>
<td>61.3</td>
<td>2.9</td>
<td>22.0</td>
<td>44.0</td>
<td>2.0</td>
<td>14</td>
<td>33.4</td>
<td>2.4</td>
</tr>
<tr>
<td>Sorghum</td>
<td>17.3</td>
<td>138.9</td>
<td>8.0</td>
<td>21.3</td>
<td>118.0</td>
<td>5.5</td>
<td>13.7</td>
<td>77.4</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Source: Jenny Rees, UNL
Pre-Plant Decisions

- Hybrid Selection
- Seeding Rate
- Date to Plant
- Nutrient Plan
- Weed Control Plan
- Irrigation Plan
- Insect Control Plan

AMS Approved
Hybrid Selection

Characteristics
- Adaptability to the region
- Yield, Yield, Yield
- Standability
- Days to maturity
- Drought tolerance
- Insect tolerance

Sources of Information
- Seed Company Representative
- University Extension
- Good Sorghum Growers in the Area
- Sorghum Checkoff Webpage
<table>
<thead>
<tr>
<th>Relative Maturity*</th>
<th>Days to Mid-Bloom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Early</td>
<td>48 - 52</td>
</tr>
<tr>
<td>Early</td>
<td>53 - 57</td>
</tr>
<tr>
<td>Medium-Early</td>
<td>58 - 63</td>
</tr>
<tr>
<td>Medium</td>
<td>64 - 69</td>
</tr>
<tr>
<td>Medium-Full</td>
<td>70 +</td>
</tr>
</tbody>
</table>

* Will vary with seed company

To reach physiological maturity add 30 to 45 days Depending on hybrid and temperature

AMS Approved
Lodging

- Population too high
- Hybrid differences
- Too much N
- Stalk Rot
 - Charcoal Rot
 - Fusarium
- Stalk insect damage
- Good yield potential with dry weather late
- Hail damage
Seeding Rate
Managing water resources for maximum grain production
Seeding Rate and Harvest Index

- Harvest Index is the ratio of grain produced vs total above ground plant weight.
- Range
 - 0.35 to 0.55

Modified from http://www.reganpdesigns.com/illustrations/
Seeding Rate

<table>
<thead>
<tr>
<th>Seeding Rate per Acre</th>
<th>Yield Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>30,000</td>
<td>3,000 - 4,500 lb</td>
</tr>
<tr>
<td></td>
<td>60 – 80 bu</td>
</tr>
<tr>
<td>50,000</td>
<td>5,000 – 7,500 lb</td>
</tr>
<tr>
<td></td>
<td>90 – 135 bu</td>
</tr>
<tr>
<td>70,000</td>
<td>8,000 - 10,000 lb</td>
</tr>
<tr>
<td></td>
<td>145 - 180 bu</td>
</tr>
<tr>
<td>90,000</td>
<td>Greater than 10,000 lb or 180 bu</td>
</tr>
</tbody>
</table>
Tillering
Plant Population Effect on Sorghum

<table>
<thead>
<tr>
<th></th>
<th>1986</th>
<th>1987</th>
<th>1988</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed/Ac</td>
<td>32000</td>
<td>64000</td>
<td>32000</td>
</tr>
<tr>
<td>Plant Pop.</td>
<td>20000</td>
<td>32000</td>
<td>21000</td>
</tr>
<tr>
<td>Tillers/Plt</td>
<td>1.5</td>
<td>1.1</td>
<td>1.8</td>
</tr>
<tr>
<td>Heads@ Harvest</td>
<td>30000</td>
<td>38000</td>
<td>40000</td>
</tr>
<tr>
<td>Lbs. Grain/Hd</td>
<td>0.166</td>
<td>0.13</td>
<td>0.11</td>
</tr>
<tr>
<td>Yield, lb/A</td>
<td>5000</td>
<td>5000</td>
<td>4600</td>
</tr>
</tbody>
</table>

Dk 46 – Low tillering

AMS Approved

Jones J. Prod. Ag. 91
Planting Date

- Planting date should be tied to soil temperature and rainfall patterns.
- Sorghum can be planted when the soil temperature reaches 60 F and seven day forecast is for warm weather.
Sorghum Planting

- Firm seed bed
- 1.25 to 2 inches deep
- Best to plant with 0.5 inches of moisture above the seed
- Thick crust will hinder plant’s ability to emerge
Sorghum Development and Daily Water Use
20 Yr Avg, Near Amarillo, TX

3 gpm/acre

Daily Water Use, Inches

Days After Planting

AMS Approved
Sorghum Fertility

Nitrogen

- Requires 2 lbs N for every 100 lbs of grain yield
 - 6000 lb (107 bu) yield requires 120 lbs N
 - In a wheat sorghum fallow rotation you will likely have 30 to 40 lbs residual N
 - Behind soybean a N credit of 40 lbs is typical
 - See NE Economic Optimum N Rate Table
- Organic Matter N Credit
 - Depends on yield potential of soil
 - Ranges from 5 to 25 lb N per percent of OM

To maximize yield and N efficiency

- Consider split application
 - Starter, 50% preplant, 30% sidedress, 20% at milk stage if possible
Table I. Economically optimum nitrogen rate (EONR) for grain sorghum following soybean in rotation.

<table>
<thead>
<tr>
<th>Expected yield (EY, bu/ac)</th>
<th>Grain price to nitrogen price ratio ((P_G/P_N)), (($/bu$ grain) / ($/lb N))</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>0, 10, 20, 35, 50</td>
</tr>
<tr>
<td>90</td>
<td>5, 20, 30, 45, 60</td>
</tr>
<tr>
<td>110</td>
<td>15, 30, 40, 55, 70</td>
</tr>
<tr>
<td>130</td>
<td>25, 40, 50, 65, 80</td>
</tr>
<tr>
<td>150</td>
<td>35, 50, 60, 75, 90</td>
</tr>
<tr>
<td>170</td>
<td>45, 60, 70, 85, 100</td>
</tr>
<tr>
<td>190</td>
<td>55, 70, 80, 95, 110</td>
</tr>
</tbody>
</table>

Grain price to nitrogen price ratio \((P_G/P_N) \), \(($/bu$ grain) / ($/lb N) \).

EONR = -68 + 0.49 EY + 6.9 \(P_G/P_N \).
Figure 3. Effect of NP starter fertilizer composition on grain moisture dry-down for a 2 x 2 placement (values averaged over tillage system), Gordon and Whitney, Belleville, 2001.
Sorghum Fertility

- **Phosphorus**
 - Maintain a soil level of 60 to 80 lbs of P2O5
 - P fertilizer rates can be cut in half by banding rather than applying broadcast

- **Potassium**
 - Often not needed in Nebraska soils
 - Sorghum requirement is similar to N

- **Sulfur**
 - May be of benefit in high yield environments
Water Management

- Sorghum requires 6 to 8 inches of water just to grow the vegetation necessary to produce any grain.
- Yield response will increase 500 to 600 lbs of grain per inch of water after the 6 to 8 inches has been received.
- If 20 inches are available then a 7000 lb yield is obtainable.
Available water holding capacity of area soils

<table>
<thead>
<tr>
<th>Soil Description</th>
<th>Avail. Water in 3 ft. (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sherm Silty Clay Loam</td>
<td>6.57</td>
</tr>
<tr>
<td>Olton Clay Loam</td>
<td>6.12</td>
</tr>
<tr>
<td>Pullman Clay Loam</td>
<td>5.94</td>
</tr>
<tr>
<td>Acuff Loam</td>
<td>5.71</td>
</tr>
<tr>
<td>Dalhart Fine Sandy Loam</td>
<td>5.67</td>
</tr>
<tr>
<td>Amarillo Fine Sandy Loam</td>
<td>5.20</td>
</tr>
<tr>
<td>Grandfield Fine Sandy Loam</td>
<td>4.80</td>
</tr>
<tr>
<td>Brownfield Fine Sand</td>
<td>3.36</td>
</tr>
</tbody>
</table>
Optimizing Sprinkler Irrigation Water

- Always apply a minimum of 0.75 inches of irrigation water at a time
 - 1.0 to 1.5 is better
 - Minimizes evaporation loss, this adds up over the season
 - 6 applications x 0.2 inches = 1.2 inches or 660 lbs (12 bu).
Sorghum Evapotranspiration Long-term Average (1997–2011)
Grain Sorghum Weed Control
http://sorghumcheckoff.com/pest-management

Weed Control Guides
Alabama Weeds, Disease and Insect Control Guide
Arkansas Recommended Chemicals for Weed and Brush Control
Kansas Chemical Weed Control for Field Crops, Pastures, Rangeland, and Noncropland
Louisiana Grain Sorghum Weed Management
Mississippi Weed Control Guidelines
Missouri Pest Management Guide
Nebraska Guide for Weed Management with Insecticide and Fungicide Information
North Carolina Weed Management in Grain Sorghum
South Carolina Weed Control in Grain Sorghum
South Dakota Sorghum Weed Control Guide
Tennessee Weed Control Manual for Tennessee
Texas Grain Sorghum Weed Control Guide
Building a Weed Control Program

- Know and prioritize your weeds
- Control all weeds prior to planting
- Must have a pre-emergence program
- Be prepared to use post emergence herbicide
- Consider crop rotation
Weed size
- Smaller the better, once weeds get over 4 inches tall they will be more difficult to control
- Mustards and prickly lettuce are much easier to control in the rosette stage than after they bolt

Drought stressed weeds are more difficult to control

Make application in front of the strip tillage operation, or a couple of days later to avoid the weed being covered up by soil at the time of application

Add appropriate additives as needed (surfactant, UAN, etc)
Kochia Control with Sharpen

AMS Approved
R Thistle Control with Sharpen

% Control

- Untreated
- RUPM
- RUPM + Sharpen 1 oz
- RUPM + 2,4-D + Sharpen 1 oz
- RUPM + Clarity + Sharpen 1 oz
- RUPM + Sharpen 2 oz

14 DAT
42 DAT

AMS Approved
Pre Sorghum Broadleaf Herbicides

- Atrazine (AAtrex, atrazine)
- Saflufenacil (Sharpen or Verdict)
- Propazine (Milo-Pro)
- Lumax EZ or Lexar EZ (atrazine + metolachlor + mesotrione)
- Zemax (metolachlor + mesotrione)

AMS Approved
Consider Atrazine

- Cost, $3.75 per pound
- Effective on Most Common Weeds
- Good Residual
- Post or Pre
- Excellent Tank Mix Partner

Weed Control Base in Sorghum

Atrazine, Pre
Weeds Controlled with Atrazine

Broadleaf Weeds, Pre
- Pigweed: Excellent
- Kochia: Excellent
- Lambsquarter: Excellent
- Velvetleaf: Good
- Sunflower: Good
- Cocklebur: Good

Grasses, Pre
- Barnyardgrass: Fair
- Crabgrass: Poor
- Foxtail: Good
- Sandbur: Fair
- Shattercane: V. Poor
- Johnsongrass: V. Poor

AMS Approved

Post – Grass control inconsistent
Atrazine Weaknesses

- Atrazine resistant weeds
- Crop rotation considerations
- Inconsistent when applied post, specially on large weeds
- Can be weak on grasses
- Ineffective on some weeds
Atrazine PRE EMERGENCE Precautions in Sorghum

- Do Not use on sand, loamy and sandy loam soils.
- Do Not use on soils containing less than 1% OM.
- Do Not use on soils with a pH of > 8.5.
- Do Not use on sorghum to be planted in furrows.
- Do Not rotate to cotton or soybeans if applied after June 10
- Rate: Varies with location but ranges from 0.75 to 2.2 qts
- SEE LABEL FOR OTHER RESTRICTIONS
Saflufenacil (Sharpen)

- Very good burndown product
- Short term residual is significant
- Rate: 1 – 2 oz
- For pre-emergence or even late pre-plant, it is best to use Verdict (dimethenamid + Sharpen) to keep rate of Sharpen at 1 oz/ac
- For post activity use with MSO and AMS or UAN
Pre Combinations with Atrazine

- **Atrazine + metoachlor**
 - Bicep II Magnum, Cinch ATZ
- **Atrazine + dimethenamid**
 - Guardsman Max. G-Max Lite
- **Atrazine + alachlor**
 - Bullet, Lariat
- **Atrazine + acetochlor**
 - Degree Xtra, Fultime NXT
- **Saflufenacil + dimethenamid**
 - Verdict
- **Atrazine + metolachlor + mesotrione**
 - Lumax, Lexar

Must use Concep III treated seed
Lumax EZ and Lexar EZ in Sorghum

<table>
<thead>
<tr>
<th>Product</th>
<th>Rate/A</th>
<th>Dual II Magnum</th>
<th>AAtrex</th>
<th>Callisto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumax EZ</td>
<td>2.7 qt</td>
<td>1.8 pt</td>
<td>0.625 qt</td>
<td>5.4 oz</td>
</tr>
<tr>
<td>AI</td>
<td>2.47 lb ai</td>
<td>1.68 lb ai</td>
<td>.625 lb ai</td>
<td>0.17 lb ai</td>
</tr>
<tr>
<td>Lexar EZ</td>
<td>3.0 qt</td>
<td>1.4 pt</td>
<td>1.3 qt</td>
<td>5.4 oz</td>
</tr>
<tr>
<td>AI</td>
<td>1.3 lb ai</td>
<td>1.3 lb ai</td>
<td>1.3 lb ai</td>
<td>0.17 lb ai</td>
</tr>
</tbody>
</table>
Restrictions for Lumax and Lexar in Grain Sorghum

- Do not apply to sorghum grown on sandy soils (sand, sandy loam or loamy sand)
- Do not apply to emerged grain sorghum
- Warning of possible crop injury if applied within 7 days of planting
Pre Sorghum Grass Herbicides

- Primarily grass control with some broadleaf activity
 - Metolachlor (Dual II Magnum, Cinch, Parallel, Me-Too-achlor, Frontier, others)
 - Dimethenamid-P (Outlook, Propel)
 - Alachlor (Micro-Tech)
 - Acetochlor (Warrant)

- If crop injury is of concern, then apply early post

 Must use Concep III treated seed!!
Grass Control Ratings

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>BYD-grass</th>
<th>Crab-grass</th>
<th>Fall Panicum</th>
<th>Fox-tail</th>
<th>Sand-bur</th>
<th>Shatter-cane</th>
<th>Witch-grass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual II Mag</td>
<td>G-E</td>
<td>G-E</td>
<td>G-E</td>
<td>G-E</td>
<td>F-G</td>
<td>P</td>
<td>G</td>
</tr>
<tr>
<td>Outlook</td>
<td>G-E</td>
<td>G-E</td>
<td>G-E</td>
<td>G-E</td>
<td>F-G</td>
<td>P</td>
<td>G</td>
</tr>
<tr>
<td>Bicep II Mag</td>
<td>G-E</td>
<td>E</td>
<td>G-E</td>
<td>E</td>
<td>F-G</td>
<td>P</td>
<td>G-E</td>
</tr>
<tr>
<td>Guardsman Max</td>
<td>G-E</td>
<td>E</td>
<td>G-E</td>
<td>E</td>
<td>F-G</td>
<td>P</td>
<td>G-E</td>
</tr>
<tr>
<td>Degree Xtra</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>F-G</td>
<td>F</td>
<td>E</td>
</tr>
<tr>
<td>Lumax EZ</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>F-G</td>
<td>P</td>
<td>E</td>
</tr>
</tbody>
</table>
Reasons for Pre Failure

- Herbicide does not get activated (move into soil)
- Crop residue results in herbicide tie up or poor soil coverage
- Too much rain resulting in leaching and dilution of herbicide
- Rate not high enough for the soil type
- Resistance
Reasons for Crop Injury

- Rain moves herbicide on top of seed
- Cool conditions slow down emergence allowing more herbicide to be absorbed by crop
- Rate to high for the soil type and pH
Post Emergence Weed Control
Herbicide Weed Ratings

<table>
<thead>
<tr>
<th></th>
<th>E Nightshade</th>
<th>Cocklebur</th>
<th>Kochia</th>
<th>Lambsquarter</th>
<th>Morningglory</th>
<th>Pigweed</th>
<th>C Ragweed</th>
<th>Sunflower</th>
<th>Velvetleaf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrazine</td>
<td>G-E</td>
<td>G</td>
<td>G-E</td>
<td>E</td>
<td>G</td>
<td>E</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>Ally +2,4-D</td>
<td>E-E</td>
<td>G-E</td>
<td>G-E</td>
<td>E</td>
<td>E</td>
<td>G-E</td>
<td>G-E</td>
<td>E</td>
<td>G</td>
</tr>
<tr>
<td>2,4-D</td>
<td>G-E</td>
<td>G-E</td>
<td>G-E</td>
<td>E</td>
<td>E</td>
<td>G</td>
<td>G-E</td>
<td>E</td>
<td>G</td>
</tr>
<tr>
<td>Starane</td>
<td>F-E</td>
<td>G</td>
<td>E</td>
<td>E</td>
<td>P</td>
<td>E</td>
<td>P</td>
<td>E</td>
<td>G</td>
</tr>
<tr>
<td>Peak</td>
<td>F-E</td>
<td>G</td>
<td>G</td>
<td>G-E</td>
<td>F</td>
<td>G</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Huskie</td>
<td>E-E</td>
<td>E</td>
<td>G</td>
<td>E</td>
<td>E</td>
<td>G-E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Permit</td>
<td>E-E</td>
<td>G</td>
<td>F</td>
<td>P</td>
<td>F</td>
<td>E</td>
<td>E</td>
<td>G-E</td>
<td>E</td>
</tr>
</tbody>
</table>

KSU Ratings
Atrazine Precautions in Sorghum

POST EMERGENCE

• Labeled rate is 1.0 – 2.0 lb/ac + Crop Oil.
• Apply when sorghum is between 6 and 12 inches.
• Watch rotation restrictions with late application.
• *Should be able to get by with 0.75 lb atrazine if weeds are small.*
2,4-D Timing Affect on Sorghum Yield

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Sorghum Height at Application (inches)</th>
<th>Yield Lb/Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>U ntre ated</td>
<td>-----</td>
<td>8432</td>
</tr>
<tr>
<td>2,4-D LV6</td>
<td>6</td>
<td>8828</td>
</tr>
<tr>
<td>2,4-D LV6</td>
<td>10</td>
<td>5885</td>
</tr>
<tr>
<td>2,4-D LV6</td>
<td>12</td>
<td>4950</td>
</tr>
</tbody>
</table>

2,4-D LV6 was applied at a rate of 2/3 qt per acre
Starane

• Pros
 – Safer on crop
 – Excellent kochia control and some other broadleaf weeds

• Negative
 – Week on pigweed

• Works best with mixed with atrazine
Strength is with weeds other than pigweed, such as cocklebur, sunflower and velvetleaf

Can be applied up to 30 inch tall sorghum when applied alone

Can be applied in KS and NE pre-emergence to control emerged weeds and provide some pre activity

Rate: 0.5 to 1.0 oz

Rotation: For soybeans, cotton and canola mostly 10 months, although 18 months in high pH areas of TX, NM and OK. SEE LABEL!

Recommend using Clarity or atrazine tank mix with 0.5 oz/ac Peak.
Post Rescue Treatment for Broadleaf Weeds

Pyrasulfotole + bromoxynil (Huskie)
10 oz/a Huskie 16 inch weeds 4 DA-A
10 oz/a Huskie 18 inch weeds 2 DA-A
Weed Control with Huskie when Applied to Palmer amaranth at Different Heights

- 12 treatments plus one untreated control
 - Huskie – 10, 13, 16 oz/a
 - Atrazine – 0.5 lb/a
 - Ammonium Sulfate – 8.5 lb/100 gal
 - Application – 3, 9, 16, 18 inch weeds
Palmer amaranth Control 7 DAT

% Control

3" weeds
9" weeds
15" weeds
18" weeds

OZ/Ac

10
13
16
Palmer amaranth Control 42 DAT
10 oz/a Huskie with 0.5 lb/a atrazine
9 inch weeds – 9 days after treatment
10 oz/a Huskie and 16 inch weeds

14 DAT

33 DAT
Huskie Injury to Sorghum, 7 DAT
Huskie Injury to Sorghum, 7 DAT
Crop Rotation

- Wheat – 7 days
- Grain and Forage Sorghum – 7 days
- Alfalfa, Corn, Soybeans – 4 months
- Sunflowers, Canola – 9 months
- Cotton – Field Bioassay
Post Grass Weed Control

- DuPont™ Inzen™ Z
 - herbicide-tolerant trait – ALS Tolerance

- DuPont™ Zest™ Herbicide
 - nicosulfuron
Inzen™ Herbicide Tolerant Sorghum

KSU; HAYS

UNTREATED CHECK

ALS Treated

ANNUAL GRASS ES
Stewardship and Best Management Practices for Inzen™ Sorghum

- Best management practices to prevent shattercane and Johnsongrass from becoming tolerant to ALS herbicides will be critical. Guidelines are being developed.
Brent Bean

USCP Agronomist
Ph: 806-674-0006
Email: brentb@sorghumcheckoff.com
Website: sorghumcheckoff.com