oil Health and Soil Sensing
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Soil Health Assessment
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Cost of Soil Health Analyses

* Chemical/Nutrient  ° Biological

e Potassium (CEC) $12 @I organic matter @

* Mineralizable nitrogen $12

* pH S5 L
* Microbial biomass C $10-15
* Physical * Enzyme activity $10-15
» Aggregate stability $10  Active Carbon $10
 Bulk density S5 * EL-FAME $30

PLFA $25-50
DNA $50-100




Soils vary across the field

Apparent Soil Conductivity

Spatial variation

High lab costs

EC-VRshallow EC-VRdeep
.g e

5§

Image from Hong et al. 200

When we combine the
high cost of analysis with
the need to understand
spatial variability, we
have a problem



How do we reduce cost?

e Laboratory
* Combination testing
* Cheaper supplies
* Less supplies
* Shorter/faster methods
* Using smaller sample sizes/volumes

* Less sophisticated/expensive instruments
You still have to collect a sample and send it to a lab




Proximal Soil Sensing
in-field “on-the-go” data collection

Er—

Non-invasive, non-destructive
Inexpensive

High resolution (spatial/temporal)
Low tech




Visible, near-infrared spectroscopy (VNIR)

soil biological, chemical and physical attributes:

soil organic C, soil texture, clay mineralogy, aggregate stability, pH, P, K

Electrical conductivity

soil physical and chemical attributes:
texture, mineralogy, CEC, and moisture

Penetrometer (Cone Index) |

soil physical attributes:

soil texture, bulk density, compaction
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Nuclear Magnetic Resonance

Atomic connections

Oscillation of electrons

Soil Spectroscopy

Visible and Near-Infrared (VNIR)
Molecular Vibrations, Rotations, Transitions
Functional Groups of Molecules
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Spectral Signatures of Soil Organic Matter
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Veum, K. S., Goyne, K. W., Kremer, R. J., Miles, R. J., & Sudduth, K. A. (2014). Biological indicators of soil quality and soil organic matter
characteristics in an agricultural management continuum. Biogeochemistry, 117, 81-99.



Why are soil spectra different?

i g -

“ - Orgamc matter s
. Inorganlc fractlon / mmerals
*\ 2o Air and water
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Roots BO%
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Challenges?

"« Environmental effects: temperature,
moisture - interference

L & Weak signals (e.g., inorganic nitrogen)




Soil electrical conductivity (EC,) sensing

* Most widely used soil sensing technology in precision agriculture
e Several commercial sensors are available

DUALEM-2S
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EC, can map soil texture within fields
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Nguyen et al., ASABE Irrigation Symposium, 2015

Note that these results required within-field calibration sampling
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On-the-Go Sensor Data Collection




Case studies
Estimating soil health with sensors

Long-term Agroecosystem (LTAR)
site in Centralia, MO

12 row crop and grass systems
sampled at 0-5 cm and 5-15 cm depth intervals

Lab analysis and soil health scores
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Case study: VNIR spectroscopy for Soil Organic Carbon

VNIR only ’
RZ=0.82 ’
RMSE = 0.267 s
4 — RPD =2.38 /

’
Slope = 0.84 o

Lab NIR works
for organic
matter (not a
new idea)

Sensor Estimated Soil Organic Carbon (%)

Labratory Soil Organic Carbon (%)

Veum et al., SSSAJ, 2015 *



Case study: Lab VNIR — Does it work for more than SOC??

Extractable K
Extractable P
Mineralizable nitrogen

Electrical conductivity
pH

Good for biological indicator
(by proxy?) but not other
categories

Microbial biomass carbon
Beta-glucosidase
Organic carbon
Water stable aggregates
Water filled pore space

0.2 0.4 0.6 0.8 1

Veum et al., SSSAJ, 2015°



What if we put different sensors together?
Sensor Data Fusion

0.25

* Lab VNIR spectral data
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What if we add other sensors?
Lab VNIR with field EC, and penetrometer data for surface soils
SMAF = Soil Management Assessment Framework

Sensor Fusion Soil Health (SMAF) Scores
I SMAF Total Score

Chemical & Nutrient SMAF

Biological SMAF>

2

Green bars show improvement with sensor fusion

I ' I ' I ' I ' I ' I
0 0.2 0.4 0.6 0.8 1
R2

Physical SMAF

Veum et al. (2017). Sensor data fusion for soil health assessment. Geoderma, 305, 53-61.



Profile Soil Properties?

O HORIZON
Surface litter:

O (humus or organic Patially decomposed

organic matter

A (tOpSOI') A HORIZON
Topsoil: Humus, living
creatures, inorganic

E (eluviated horizon) minerais

E HORIZON
Zone of leaching, mate-

B (SUbSOil) rials move downward

B HORIZON
Subsoil: iron, aluminium
humic compounds are
o accumulated and clay
C (parent material)  jeached down from A

and E horizons

C HORIZON

Weathered parent

material: Partial break-
R (bedrock) down of inorganic

minerals

R HORIZON
Bedrock

How do we get this data without digging a soil pit?



Profile Sensor Data Fusion Results
Lab VNIR with field EC, and penetrometer (P4000 Data)

= Bulk Density

Top bar = sensor fusion results; bottom bar = single-sensor results
' I ' I ' I ' I ' I
0 0.2 0.4 0.6 0.8 1
R2
* Combining EC,, Cone Index, and VNIR data improved estimates of
texture fractions and bulk density

Cho et al., Trans. ASABE, 2017



Field Test: All Data from Field?

In-situ, field moist, soil profile data
153 locations across 22 fields in MO & IN; 1 m, Veris P4000
Also scanned dry in the lab for comparison (n=708)
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Predicted SOC, %

Is in-field sensor data as good as lab sensor data?

Soil Organic Carbon Clay Content

PLS Dry vs. Dry S el SR PLS Dry vs. Dry

Field Moist

EPO-PLS Field Legend EPO-PLS Field L/egend
Moist vs. Field EPO-PLS-BL EPO-PLS-BL-C # Line of Best Fit Moist vs. Field 7“ Line of Best Fit
Moist 74 Zero Error Line Moist # Zero Error Line

Predicted Clay Content, %

-40-
1 2 0 1 5 0 20 40 60 0 20 40 60 0 20 40 60
Actual SOC, % Actual Clay Content, %

Applied PLSR, EPO, and covariate assisted Bayesian Lasso
Veum et al. (2018) Sensors

27



Long-term goal?
SENSOR BASED SOIL HEALTH ASSESSMENT

Physical
EC./CI




Matching soil health indicators with sensors

- Physical Conductivity/ Mechanical )
— Bulk density Resistivity Resistance
— Water filled pore space L g a l
\____— Water stable aggregates T Y,
(" Biological Optical N
— grglanlchrbon 25 Sg
— PB-glucosidase <
— Microbial biomass carbon L
/* Chemical and nutrient \
— pH Electro-
— Electrical conductivity Chemical
— Mineralizable nitrogen ®
— Extractable P HH Lo

\_ — Extractable K -
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Applicability of proximal soil sensors
Courtesy of Slava Adamchuk, McGill Univ.

EC/ER  Optical Mech Electro
Soil property LW;? \5\ @ Chem
Soil texture (clay, silt and sand) Good OK Some
Soil organic matter or total carbon Some Good
Soil water (moisture) Good Good
Soil salinity (sodium) OK Some
Soil compaction (bulk density) Good Some
Depth variability (hard pan) Some OK Some
Soil pH Some Good
Residual nitrate (total nitrogen) Some Some OK
Other nutrients (potassium) Some OK

CEC (other buffer indicators) OK OK



Thank you!
Kristen.Veum@usda.gov

Gamma-ray
spectrometer




