2020 Nebraska Crop Budgets

Robert Klein, Senior Editor, Western Nebraska Crop Specialist Glennis McClure, Extension Educator - Agricultural Economics Roger Wilson, Farm Management / Enterprise Budget Analyst, Retired

The 2020 Nebraska Crop budget projections were created using cropping practice norms for many producers in Nebraska. However, each individual farming operation is unique.

These budgets are available in both Adobe PDF and Excel worksheet formats. Producers can modify them to match their specific situation. The danger of releasing a tool that can subsequently be modified is that there is no way to verify that no alterations have been made or unrealistic data entered. Therefore, users of this tool are responsible for independently verifying all results prior to relying on them.

Original files for these budgets are available at http://extension.unl.edu/publications and on https://cropwatch.unl.edu/budgets.

For more information contact:
Robert Klein, 308-696-6705 or rklein1@unl.edu
Glennis McClure, 402-472-0661 or gmcclure3@unl.edu

The following individuals contributed to these budgets in their specialty area:

Jessica Groskopf
Robert Harveson
Tamra Jackson-Ziems
Jim Jansen
Paul Jasa
Jay Parsons Chris Proctor Robert Tigner Stephen Wegulo Robert Wright

Extension Educator - Agricultural Economics Extension Entomologist Plant Pathologist - Corn and Sorghum Extension Educator - Agricultural Economics Extension Biological Systems Engineer Associate Professor - Agricultural Economics Extension Educator - Weed Management Extension Educator - Agricultural Economics Plant Pathologist - Wheat and Ornamental Extension Entomologist

Nebraska Extension is a Division of the Institute of Agriculture and Natural Resources at the University of Nebraska-Lincoln cooperating with the Counties and the United States Department of Agriculture.
Nebraska Extension educational programs abide with the nondiscrimination policies of the University of NebraskaLincoln and the United States Department of Agriculture.

Table of Contents

Table of Budgets2
Crop Budgeting Procedures 5
Budget Divisions 5
Benefits of Soybeans in Corn/Soybean Rotation 6
Table 1. Power Unit Cost Data 6
Table 2. Machinery Cost Data 7
Table 3. Material Prices 8
Converting Energy Numbers in Budgets 10
Table 4. Conversion of Diesel to Electricity 10
Diesel Fuel Conversion for Center Pivots 10
Table 5. Adjusting Diesel Fuel Required by Center Pivots for Various Lifts and Pressures 11
Table 6. Federal Crop Insurance Premium Estimates 12

Table of Budgets

Crop	Page
1-Alfalfa, Conventional Tillage, Fall Establishment, Dryland	13
2-Alfalfa, Roundup Ready ${ }^{\text {® }}$, No Till, Fall Establishment, Dryland	14
3-Alfalfa, Roundup Ready ${ }^{\text {e }}$, Conventional Tillage, Fall Establishment, Dryland	15
4-Alfalfa, Small Square Bales, Conventional Tillage, Establish Spring Seed with Herbicides, 2.8 ton Yield, Dryland	16
5-Alfalfa, Roundup Ready ${ }^{\circ}$, Small Square Bales, Conventional Tillage, Establish Spring Seed, 2.8 ton Yield, Dryland	17
6-Alfalfa, Large Square Bales, Conventional Tillage, Establish Spring Seed with Herbicides, 3.8 ton Yield, Pivot Irrigated	18
7-Alfalfa, Roundup Ready®, Large Square Bales, Conventional Tillage, Establish Spring Seed, 4 ton Yield, Pivot Irrigated	19
8-Alfalfa, Large Round Bales, Panhandle, Conventional Tillage, Fall Seeded with Subsequent Year Production, 2.5 ton Yield, Gravity Irrigated, fed by canal	20
9-Alfalfa, Large Round Bales, 4.4 ton Yield, Dryland	21
10-Alfalfa, Large and Small Square Bales, 6.7 ton Yield, Pivot Irrigated Electric	22
11-Alfalfa, Roundup Ready ${ }^{\oplus}$, Large and Small Square Bales, 6.8 ton Yield, Pivot Irrigated Electric	23
12-Alfalfa, Panhandle, Large and Small Square Bales, 6.6 ton Yield, Pivot Irrigated Electric	24
13-Alfalfa, Large Square Bales, 6.6 ton Yield, Gravity Irrigated, fed by canal	25
14-Alfalfa, Roundup Ready ${ }^{\text {® }}$, Large Square Bales, 6.8 ton Yield, Gravity Irrigated, fed by canal	26

Table of Budgets (Continued)

Crop	Page
15-Corn, Conventional Tillage, Continuous, 100 bushel Yield, Dryland	27
16-Corn, Conventional Tillage, in Corn/Soybean Rotation, Conventional Seed (Non Bt), 110 bushel Yield, Dryland	28
17-Corn, Eastern Nebraska, Conventional Tillage, Continuous, 160 bushel Yield, Dryland	29
18-Corn, Eastern Nebraska, Conventional Tillage, in Corn/Soybean Rotation, 170 bushel Yield, Dryland	30
19-Corn, Bt, ECB, RR2, LL, \& RIB, No Till, Continuous, 135 bushel Yield, Dryland	31
20-Corn, Bt, ECB, RR2, LL, \& RIB, Eastern Nebraska, No Till, Continuous, 180 bushel Yield, Dryland	32
21-Corn, SmartStax RIB Complete, No Till, Continuous, 140 bushel Yield, Dryland	33
22-Corn, SmartStax RIB Complete, Eastern Nebraska, No Till, Continuous, 185 bushel Yield, Dryland	34
23-Corn, Bt, ECB, \& RIB, No Till, after Beans, 145 bushel Yield, Dryland	35
24-Corn, Bt, ECB, \& RIB, Eastern Nebraska, No Till, after Beans, 195 bushel Yield, Dryland	36
25-Corn, Bt, ECB, RR2, LL, \& RIB, Southwest, Ecofallow, Follows Wheat, Two Crops in Three Years, 130 bushel Yield, Dryland	37
26-Corn, Bt, ECB, RW, \& RIB, Ridge Till, Continuous, 245 bushel Yield, Gravity Irrigated, fed by a well	38
27-Corn, Bt, ECB, \& RIB, Ridge Till, after Beans, 255 bushel Yield, Gravity Irrigated, fed by a well	39
28-Corn, SmartStax RIB Complete, Ridge Till, Continuous, 250 bushel Yield, Gravity Irrigated, fed by a well	40
29-Corn, SmartStax RIB Complete, Panhandle, Conventional Tillage, Continuous, 195 bushel Yield, Gravity Irrigated, fed by canal	41
30-Corn, Bt, ECB, RW, \& RIB, No Till, Continuous, 245 bushel Yield, Pivot Irrigated Electric	42
31-Corn, SmartStax RIB Complete, No Till, Continuous, 250 bushel Yield, Pivot Irrigated Electric	43
32-Corn, Bt, ECB, \& RIB, No Till, after Beans, 275 bushel Yield, Pivot Irrigated Electric	44
33-Corn, Enlist, Bt, ECB, \& RIB, No Till, after Beans, 275 bushel Yield, Pivot Irrigated Electric	45
34-Corn, Bt, ECB, RR2, LL, \& RIB, No Till, after Beans, 275 bushel Yield, Pivot Irrigated Electric	46
$35-\mathrm{Corn}$, Bt, ECB, RW, \& RIB, Conventional Tillage, Continuous, 235 bushel Yield, Pivot Irrigated Diesel	47
36-Corn, Bt, ECB, \& RIB, Conventional Tillage, after Beans, 245 bushel Yield, Pivot Irrigated Diesel	48
37-Corn, SmartStax RIB Complete, Panhandle, Conventional Tillage, Continuous, 195 bushel Yield, Pivot Irrigated Electric	49
38-Corn, Bt, ECB, RR2, LL, \& RIB, Panhandle, Conventional Tillage, after Beans, 205 bushel Yield, Pivot Irrigated Electric	50
39-Corn, SmartStax RIB Complete, Conventional Tillage, Continuous, 240 bushel Yield, Pivot Irrigated Diesel	51
40-Corn, Silage, No Till, Continuous, 28 ton Yield, Pivot Irrigated Diesel	52
41-Dry Beans, Panhandle, Reduced Till, after Harvest Cover Crop, 27 cwt Yield, Pivot Irrigated Electric	53
42-Dry Beans, Panhandle, Conventional Tillage, 27 cwt Yield, Gravity Irrigated, fed by canal	54
43-Dry Beans, Panhandle, Conventional Tillage, 27 cwt Yield, Pivot Irrigated Electric	55
44-Dry Beans, Direct Harvest, Panhandle, Conventional Tillage, 27 cwt Yield, Pivot Irrigated Electric	56
45-Grain Sorghum, Southwest, Conventional Tillage, 115 bushel Yield, Dryland	57
46-Grain Sorghum, No Till, 135 bushel Yield, Dryland	58
47-Grain Sorghum, Southwest, Ecofallow, after Wheat, Two Crops in Three Years, 120 bushel Yield, Dryland	59

Table of Budgets (Continued)

Crop	Page
48-Grain Sorghum, No Till, Limited Irrigation, 170 bushel Yield, Pivot Irrigated Diesel	60
49-Grass, Fall Establishment, Pivot Irrigated Diesel	61
50-Grass Hay, Large Round Bales, 2.2 ton Yield	62
51-Millet, Panhandle, Stubble Mulch Fallow, Followed by Wheat, Two Crops in Three Years, 22 cwt Yield, Dryland	63
52-Millet, Panhandle, No Till, 22 cwt Yield, Dryland	64
53-Oats, No Till, 85 bushel Yield, Dryland	65
54-Pasture, Grazing, 11 AUM Yield, Pivot Irrigated Diesel	66
55-Peas, Panhandle, No Till, 35 bushel Yield, Dryland	67
56-Sorghum-Sudan, Annually Planted, Conventional Tillage, Large Round Bales, 5 ton Yield, Dryland	68
$57-$ Soybeans, Roundup Ready 2 Yield ${ }^{\ominus}$, Conventional Tillage, after Corn, 45 bushel Yield, Dryland	69
58 -Soybeans, Roundup Ready 2 Yield ${ }^{\text {® }}$, No Till, after Corn, 50 bushel Yield, Dryland	70
59-Soybeans, Roundup Ready 2 Yield ${ }^{\oplus}$, No Till, Continuous, 45 bushel Yield, Dryland	71
60-Soybeans, Roundup Ready 2 Yield ${ }^{\oplus}$, Conventional Tillage, after Corn, 67 bushel Yield, Pivot Irrigated	72
61-Soybeans, Roundup Ready 2 Yield ${ }^{\ominus}$, Ridge Till, after Corn, 70 bushel Yield, Gravity Irrigated, fed by a well	73
62-Soybeans, Roundup Ready 2 Xtend ${ }^{\oplus}$ Treated, No Till, Narrow Row after Corn, 75 bushel Yield, Pivot Irrigated Diesel	74
63-Soybeans, Roundup Ready 2 Yield ${ }^{\oplus}$ Treated, No Till, Narrow Row, Continuous, 64 bushel Yield, Pivot Irrigated Diesel	75
64-Soybeans, LibertyLink ${ }^{\oplus}$ Treated, No Till Drilled 7.5-inch Rows, after Corn, 78 bushel Yield, Pivot Irrigated Diesel	76
65-Soybeans, Enlist E3 ${ }^{\text {m" }}$ Treated, No Till Drilled 7.5-inch Rows, after Corn, 78 bushel Yield, Pivot Irrigated Diesel	77
66-Soybeans, Roundup Ready 2 Xtend ${ }^{\circledR}$ Treated, No Till Drilled 7.5-inch Rows, after Corn, 78 bushel Yield, Pivot Irrigated Diesel	78
67-Sugarbeet, Roundup Ready ${ }^{\oplus}$, Panhandle, One Pass Zone-Tillage, 26 ton Yield, Gravity Irrigated, fed by canal	79
68-Sugarbeet, Roundup Ready ${ }^{\oplus}$, Panhandle, Conventional Tillage, 26 ton Yield, Gravity Irrigated, fed by canal	80
69-Sugarbeet, Roundup Ready ${ }^{\circ}$, Panhandle, One Pass Zone-Tillage, 26 ton Yield, Pivot Irrigated Diesel	81
70-Sugarbeet, Roundup Ready ${ }^{\text {® }}$, Panhandle, Conventional Tillage, 26 ton Yield, Pivot Irrigated Diesel	82
71-Sunflower, Clearfield, Panhandle, No Till, Following Corn or Grain Sorghum, 13 cwt Yield, Dryland	83
72-Sunflower, Clearfield, Panhandle, Ecofallow, after Wheat, Two Crops in Three Years, 16 cwt Yield, Dryland	84
73-Sunflower, Clearfield, Panhandle, No Till, 30 cwt Yield, Pivot Irrigated	85
74-Wheat, Southwest, No Till, Wheat after Row Crop, 55 bushel Yield, Dryland	86
75-Wheat, Panhandle, No Till, Fallow, One Crop in Two Years, 70 bushel Yield, Dryland	87
76-Wheat, Panhandle, Stubble Mulch Fallow, One Crop in Two Years, 65 bushel Yield, Dryland	88
77-Wheat, Panhandle, Conventional Tillage, One Crop in Two Years, 60 bushel Yield, Dryland	89
78-Wheat, Southwest, No Till, Wheat before Corn, Two Crops in Three Years, 80 bushel Yield, Dryland	90
79-Wheat, Panhandle, No Till, after Dry Beans, 105 bushel Yield, Pivot Irrigated Diesel	91
80-Wheat, Panhandle, No Till, in Rotation, 90 bushel Yield, Pivot Irrigated Electric	92
81-Cover Crop, Conventional Tillage	93
82-Cover Crop Grazing, No Till	94

Crop Budgeting Procedures

This publication contains 82 crop production budgets for 15 crops, as well as tables for power, machinery, labor, and input costs used to develop these budgets. Each budget consists of five sections, including:

$$
\cdot \text { •Heading }
$$

-List of representative field operations
-List of materials and services used

- Operations and interest tabulations
- Overhead costs, including real estate taxes and opportunity charges
The budgets are presented in a worksheet format with a "Your Estimate" column for recording cost modifications.

Budget Divisions

The heading consists of the crop name, system description, and method of water application.

The list of representative field operations is organized in a table with columns for the operation name, quantity or number of times used with units, labor, fuel and lube, power source, and implement costs for both repairs and ownership. "Times" or "Quantity" is typically presented in acres with a decimal denoting where an operation is done on less than all of the acres or where it represents the probability of an operation being done. For those operations that are done multiple times, the number of times are listed. Swathing multiple cuttings of hay is an example. If a unit is other than "acres," it is specified in the "Unit" column. Other units used are bushels (bu), hundredweight (cwt), tons, and acre-inches (ai).

Labor costs for each operation were calculated from machinery accomplishment rates and adjusted for additional time required for getting machinery ready, adjusting machinery, and handling fertilizer and other supplies. The estimated costs for completing these operations are multiplied by the number in the "Times" or "Quantity" column, the product of which is multiplied by the hourly wage ($\$ 25$ per hour) and the labor factor.

Fuel costs also use machinery accomplishment rates as well as estimated fuel consumption rates to determine fuel use. The fuel cost is multiplied by a lube factor of 1.15 and the price of energy which is $\$ 2.27$ per gallon for diesel and $\$ 0.107$ per kWh for
electricity. Repairs and depreciation costs are estimated using functions and factors from the Agricultural Engineer's Yearbook, which is published by the American Society of Agricultural and Biological Engineers. It requires making assumptions about the size and age of the equipment, which we did. We further assumed that machinery was fully utilized.

Data used to calculate power unit costs are in Table 1 and data used for machinery operation costs are in Table 2. All units are acres unless noted in the footnotes.

Irrigation costs were calculated using engineering performance standards and typical water application rates, which will depend on the rainfall area. Repair and ownership costs for the power component of the irrigation system refer to the pump and power unit. Repair and ownership costs for the implement component refer to the delivery system (pipe or pivot).

The list of materials and services used is calculated by multiplying the application rate by the application price (Table 3) and then by the percent acres applied. A value less than 100 percent is used when a material or service is applied on only part of the acres or part of the time. For example, fields planted with Bt corn seed must have 20 percent of the acres planted to a refuge crop. There would be 20 percent in the column called "Percent Acres Applied" for the non-Bt seed and 80 percent for the Bt seed. Another example is when a practice is not always used. If an insecticide is used one year out of four, a " 25 percent" would be entered in the column "Percent Acres Applied." The cost for each material/service is computed by multiplying the percentage of acres by the quantity per acre and then by the price per unit.

Prices for materials and services in the budgets were obtained in October 2019. Multiple Peril Crop insurance premiums per acre for the crop budgets are based on 2019 figures at the 70% for irrigated and 75% for dryland LP (level by practice). See Table 6 for costs listed in budgets. Actual federal crop insurance premiums for 2020 will be available for producers in the spring of 2020. Additional hail and wind or other additional insurance coverages per crop were not included in the budgets.

The value in the "Operation Index" column in the "Materials and Services" section indicated the corresponding operation in the "Field Operations" section. Data for calculating materials cost is in Table 3.

The operations and interest tabulations are the sum of totals of the first two sections with interest calculated on the cash costs. Cash costs in interest calculations include labor, fuel, and repairs from the list of field operations and all costs from the materials and services.

Overhead costs include accounting, liability insurance, vehicle cost, and office expense. Real estate cost is calculated using values from the UNL publication Nebraska Farm Real Estate Market Developments published in June 2019 times an investment rate of 3 percent. Until 2018, 4 percent was used. Taxes on real estate are not included in interest calculations because in Nebraska they are due at the end of the year in which they accrue and are not delinquent until May and September of the following year.

A production cost and cash cost per unit of production is calculated. The cost per unit of production is the sum of all costs divided by the projected yield. The cash cost per unit of production does not include machinery power and implement ownership, and real estate opportunity costs.

It should be noted that these budgets are cost estimates only. Revenue projections and profitability estimates are not included.

Benefits of Soybeans in Corn/Soybean Rotation

The budgets for continuous soybeans are different from the budgets for soybeans after corn. A direct comparison of these budgets does not tell the entire story as some of the benefits from soybeans in a corn/soybean rotation are realized in the following corn crop.

One benefit is decrease of the corn rootworm problem. When corn follows soybeans, the rootworm insecticide can be omitted and there is no need to purchase corn seed with the rootworm trait. This amounts to approximately a $\$ 15.00$ per acre savings to the following corn crop.

A second benefit is that corn following soybeans will typically yield more. This increase is between 4 to 10 bushels per acre for irrigated corn and 10 to 30 bushels for dryland corn. Using a 10 bushel increase in corn and a price of $\$ 3.70$ per bushel results in a $\$ 37$ per acre increase in income.

A final benefit is the value of nitrogen produced by the soybean crop. If the soybeans produce 45 pounds of nitrogen per acre, this amounts to a savings to the corn crop of $\$ 18.00$ per acre when nitrogen costs forty cents a pound.

The above benefits amount to $\$ 70$ per acre which does not include the benefits of spreading labor and machinery use requirements out over a longer time frame.

However, additional phosphorus must be applied to replace that used by the soybeans in a corn crop following soybeans. This amounts to about 0.8 pound for every bushel of soybeans produced. The cost to replace 48 pounds of P2O5 needed for a 60 bushel per acre soybean crop would be approximately $\$ 20$ per acre.

Table 1. Power Unit Cost Data

Name	List Price	Age	Total Tach	Est. Hours per Year
Large Tractor	415,582	10	2,500	250
Medium Tractor	246,134	5	2,500	500
Combine	429,479	10	1,500	200
Electric Pump	10,500	5	2,400	800
Diesel Pump for Pivot	15,750	5	2,400	800
Diesel Pump for Pipe	15,750	5	2,400	800
Windrower	167,486	10	2,500	200

Table 2. Machinery Cost Data

Operation Name	List Price	Age	$\begin{gathered} \text { Annual } \\ \text { Use } \end{gathered}$	Unit	Units per Hour	Diesel Use per Hour
Anhydrous Application	N/A	5	500	acre	12	6.36
Bale Large Round	25,899	5	1,000	ton	10	2.88
Bale Large Square	149,514	5	1,000	ton	16	6.19
Bale Small Square	28,000	5	1,250	Ton	4	3.50
Cart	42,000	5	440,000	bushel	1,540	3.00
Chisel	59,465	5	2,000	acre	11	8.26
Chop Stalks	19,971	5	500	acre	12	5.74
Combine Dryland Corn - Header	56,787	5	1,000	acre	7	10.50
Combine Dryland Soybeans - Header	44,957	5	1,000	acre	7	10.50
Combine Dryland Sorghum - Header	44,957	5	1,000	acre	7	10.50
Combine Irr Corn - Header	56,787	5	1,000	acre	7	10.50
Combine Irr Dry Beans - Header	44,957	5	1,000	acre	5	10.50
Combine Irr Soybeans - Header	44,957	5	1,000	acre	6	10.50
Combine Irr Sorghum - Header	44,957	5	1,000	acre	7	10.50
Combine Irr Dry Beans-Draper Flex Platform/Header	44,957	5	1,000	acre	5	10.50
Combine Small Grain - Header	44,957	5	1,000	acre	7	10.47
Combine Sunflowers - Header	56,787	5	1,000	acre	7	10.50
Corrugate	30,000	5	300	acre	7	4.39
Disk	48,182	5	2,000	acre	11	8.29
Double Windrows	7,403	20	300	acre	20	2.11
Drill	74,203	10	1,000	acre	13	4.99
Drill Grass	74,203	10	1,000	acre	9	4.29
Drill No-Till	74,203	5	1,000	acre	12	6.07
Drill w/ Fertilizer	74,203	10	1,000	acre	11	5.00
Field Cultivation	64,048	5	2,000	acre	15	8.20
Harrow		5	1,000	acre	19	2.05
Irrigation Ditch	N/A	5	1,000	acre-inch	2	
Irrigation Pipe Diesel 125' Lift	N/A	10	2,600	acre-inch	2	3.03
Irrigation Pivot Diesel 125' Lift	75,000	10	2,600	acre-inch	2	3.34
Irrigation Pivot Diesel 125' Lift w/fertigation	78,000	10	2,600	acre-inch	2	3.34
Irrigation Pivot Electric 125' Lift	75,000	10	2,600	acre-inch	2	
Irrigation Pivot Electric 125' Lift w/fertigation	78,000	10	2,600	acre-inch	2	
Lift Beets	125,000	5	1,000	acre	6	6.19
Load Large Square	4,213	5	3,000	ton	20	4.00
Load Small Square	13,000	5	1,250	ton	10	2.00
Move Large Round	4,213	5	3,000	ton	20	4.00
Pickett Windrowers	32,000	5	1,000	acre	10	6.07
Planter	83,593	5	1,000	acre	10	2.73
Plant Narrow Row	103,593	5	1,000	acre	10	2.58
Plant No-Till	93,593	5	1,000	acre	10	3.38
Plow	16,771	5	1,000	acre	8	6.00
Ridge Cultivate/Ditch	30,000	5	1,000	acre	12	5.33
Ridge Cultivation	30,000	5	1,500	acre	10	5.33
Ridge Plant and Band Herbicide	93,593	5	1,500	acre	10	3.41
Rod Weeder		5	1,000	acre	13	5.35
Rod Weeder \& Fertilizer		5	1,000	acre	13	5.35
Roll		5	300	acre	9	5.46
Roller Harrow	33,000	5	1,000	acre	10	5.00
Rotary Hoe	25,000	5	1,000	acre	15	3.67
Row Crop Cultivation	30,000	5	1,000	acre	11	3.50

Table 2. Machinery Cost Data (Continued)

Operation Name	List Price	Age	Annual Use	Unit	Units per Hour	Diesel Use per Hour
Seeder/Packer	62,545	5	1,000	acre	8	4.29
Spray (Prior Year Stubble)	48,000	5	2,500	acre	25	2.64
Spray Fertilizer	48,000	5	1,000	acre	25	2.64
Spray Fertilizer and Herbicide	48,000	5	1,000	acre	25	2.64
Spray Herbicide	48,000	5	2,500	acre	25	2.64
Spray Insecticide	48,000	5	2,500	acre	25	2.64
Spray Spring Burndown Herbicide	48,000	5	2,500	acre	25	2.64
Spread Fertilizer	N/A	5	1,000	acre	13	3.86
Ripper	59,465	5	500	acre	9	8.25
Swath/Condition Hay	-	5	2,000	acre	10	5.00
Till Plant Beets	83,593	5	1,000	acre	6	8.25
Top Beets	55,000	5	1,000	acre	6	3.50
Turn Windrows	11,634	5	1,000	acre	12	2.10
Windrow Grain	-	5	3,000	acre	10	5.00

Table 3. Material Prices

Item	Price per Unit
Additives	$\$ 0.35 /$ pound
$21-0-0-24 \mathrm{~S}$	$\$ 3.00 /$ acre
Approved adjuvant	$\$ 10.00 /$ gallon
Crop Oil Concentrate	$\$ 22.50 /$ gallon
MSO	$\$ 1.50 /$ gallon
NIS	$\$ 10.00 /$ acre
UAN	$\$ 15.00 /$ bale
Custom	$\$ 5.00 /$ acre
Aerial Spray	$\$ 10.75 /$ ton
Bale Lg Sq 1360 lb	$\$ 0.08 /$ bushel
Broadcast Seed	$\$ 6.00 /$ ton
Chop, Haul, Pack	$\$ 5.00 /$ ton
Dry 2 Points Removed	$\$ 0.28 / \mathrm{cwt}$
Haul \& Apply Manure	$\$ 0.24 /$ cwt
Haul Beets	$\$ 0.30 /$ cwt
Haul Grain (Dry Beans)	Haul Grain (Millet)
Haul Grain (Sunflower)	$\$ 0.11 /$ bushel
Haul Grain Bushels	$\$ 2.00 /$ bale
Load Large Square Bales	$\$ 7.00 /$ acre
Spray	

Item	Price per Unit
Fertilizer	$\$ 2.45 /$ gallon
$10-34-0$	$\$ 2.50 /$ gallon
$10-34-0-1 \mathrm{Zn}$	$\$ 0.23 /$ pound
$11-52-0$	$\$ 1.30 /$ gallon
$28-0-0$	$\$ 0.40 / \mathrm{lbs} \mathrm{N}$
$32-0-0$	$\$ 0.40 / \mathrm{lbs} \mathrm{N}$
$32-0-0$ (Applied by Pivot)	$\$ 0.40 / \mathrm{lbs} \mathrm{N}$
$32-0-0$ (Applied by R2)	$\$ 0.43 / \mathrm{lbs} \mathrm{N}$
$46-0-0$	$\$ 0.32 / \mathrm{lbs}$ N
$82-0-0$	$\$ 1.00 /$ ton
Uncomposted manure	$\$ 4.00 /$ pint
Fungicide and Seed Treatment	
Copper	$\$ 330.00 /$ gallon
Headline AMP	$\$ 0.06 / \mathrm{lb}$
Pea Seed Inoculant	$\$ 700.00 /$ gallon
Priaxor	$\$ 690.00 /$ gallon
Proline	$\$ 340.00 /$ gallon
Prosaro 421 SC	$\$ 230.00 /$ gallon
Quadris	$\$ 220.00 /$ gallon
Quilt Xcel	$\$ 580.00 /$ gallon
Stratego YLD	$\$ 100.00 /$ gallon
Tilt	

Table 3. Material Prices (continued)

Item	Price per Unit
Herbicide	
2,4-D Amine	\$13.00/gallon
2,4-D Ester 4\#	\$16.00/gallon
AAtrex 4L	\$18.00/gallon
Acuron	\$70.00/gallon
Aim 2EC	\$200.00/quart
Ally Extra SGW/TOTSOL	\$9.00/ounce
Armezon	\$21.00/ounce
Armezon Pro	\$170.00/gallon
Atrazine 4L	\$18.00/gallon
Atrazine 90 DF	\$4.20/pound
Authority First DF	\$95.00/pound
Authority MTZ	\$40.00/pound
Authority Supreme	\$530.00/gallon
Balance Flexx	\$5.00/ounce
Basagran 5L	\$80.00/gallon
Beyond	\$610.00/gallon
Bicep II Magnum	\$55.00/gallon
Brox 2EC	\$40.00/gallon
Callisto 4SC	\$350.00/gallon
Dicamba	\$50.00/gallon
DiFlexx	\$230.00/gallon
DiFlexx DUO	\$105.00/gallon
Distinct	\$40.00/gallon
Engenia	\$120.00/gallon
Enlist DUO	\$30.00/gallon
Enlist One	\$40.00/gallon
Extreme	\$28.00/gallon
FeXapan	\$63.00/gallon
Fierce	\$130.00/pound
FlexStar GT	\$40.00/gallon
Glyphosate 5\# w/Surfactant	\$15.00/gallon
Gramoxone SL 2.0	\$27.00/gallon
Huskie	\$120.00/gallon
Landmaster BW	\$17.00/gallon
Laudis	\$610.00/gallon
Liberty	\$80.00/gallon
Lumax EZ	\$80.00/gallon
Outlook	\$160.00/gallon
Peak	\$18.00/ounce
Proline 480 SC	\$690.00/ounce
Prowl H2O	\$52.00/gallon
Pursuit	\$480.00/gallon
Raptor	\$610.00/gallon
Roundup WeatherMax	\$33.00/gallon
Rugged	\$35.00/gallon
Select Max	\$115.00/gallon
Sharpen	\$900.00/gallon

Item	Price per Unit
Herbicide	
Spartan 4F	$\$ 280.00 /$ gallon
Spirit	$\$ 14.00 /$ ounce
Status	$\$ 5.00 /$ ounce
Valor XLT	$\$ 96.00 /$ pound
Velpar 75DF	$\$ 36.00 /$ pound
Vida	$\$ 60.00 /$ pound
Warrant Ultra	$\$ 60.00 /$ gallon
XtenviMax	$\$ 63.00 /$ gallon
Zidua Pro	$\$ 500.00 /$ gallon
Zidua SC	$\$ 750.00 /$ gallon

Insecticide	
Asana XL	$\$ 75.00 /$ gallon
Brigade 2EC	$\$ 125.00 /$ gallon
Capture LFR	$\$ 340.00 /$ gallon
Lorsban 15 G	$\$ 2.25 /$ pound
Lorsban 4 E	$\$ 55.00 /$ gallon
Lorsban Advanced	$\$ 60.00 /$ gallon
Mustang Maxx	$\$ 180.00 /$ gallon
Regent 4 SC	$\$ 10.00 /$ ounce
Warrior II/Zeon	$\$ 380.00 /$ gallon

Other	
Electricity Fixed	$\$ 30.00 / \mathrm{acre}$
Electricity Usage	$\$ 0.107 / \mathrm{kw}$
Fence $/$ Water Repairs	$\$ 260.00 /$ circle
Irrigation District O\&M Charge	$\$ 30.00 /$ acre
Move Cattle	$\$ 25.00 / \mathrm{hour}$
Twine Large Round	$\$ 0.70 / \mathrm{bale}$
Twine Large Square	$\$ 1.23 / \mathrm{bale}$
Twine Small Square	$\$ 0.07 / \mathrm{bale}$

Rental

Grass Drill	$\$ 18.00 /$ acre
Seeder/Packer	$\$ 15.00 /$ acre

Scouting	
Scouting Dry Beans	$\$ 10.00 /$ acre
Scouting Dryland Corn	$\$ 7.00 /$ acre
Scouting Dryland Soybeans	$\$ 7.00 /$ acre
Scouting Dryland Wheat	$\$ 7.00 /$ acre
Scouting Grain Sorghum	$\$ 7.00 /$ acre
Scouting Irrigated Corn	$\$ 12.00 /$ acre
Scouting Irrigated Soybeans	$\$ 12.00 /$ acre
Scouting Irrigated Wheat	$\$ 12.00 /$ acre
Scouting Sugar Beets	$\$ 16.00 /$ acre

Table 3. Material Prices (continued)

Item	Price per Unit
Seed	$\$ 9.00 /$ pound
Alfalfa RR 2/Inoculant	$\$ 6.00 /$ pound
Alfalfa w/Inoculant	$\$ 220.00 / \mathrm{bag}$
Corn	$\$ 250.00 / \mathrm{bag}$
Corn Bt, ECB, \& RIB	$\$ 250.00 / \mathrm{bag}$
Corn Bt, ECB, RR2, LL \& RIB	$\$ 280.00 / \mathrm{bag}$
Corn Bt, ECB, RW, \& RIB	$\$ 220.00 / \mathrm{bag}$
Corn Bt, ECB, RW, RR2, LL\& RIB	$\$ 280.00 / \mathrm{bag}$
Corn RR2, LL	$\$ 290.00 / \mathrm{bag}$
Corn SmartStax RIB Complete	$\$ 15.00 / \mathrm{acre}$
Cover Crop	$\$ 25.00 / \mathrm{acre}$
Cover Crop Grazing Mix	$\$ 90.00 / \mathrm{cwt}$
Edible Beans	$\$ 75.00 / \mathrm{acre}$
Grass Seed	$\$ 0.60 /$ pound
Millet	$\$ 9.00 / \mathrm{bushel}$
Oats	$\$ 18.00 / \mathrm{bushel}$
Peas	

Converting Energy Numbers in Budgets

If your energy source is different from that used in the crop budgets, use Table 4, developed by Extension Irrigation Engineer Derrel Martin, to convert from diesel to other energy sources.

For example, to convert diesel in gallons to kilowatt-hours of electricity, the multiplier is 14.12. If electricity is $\$ 0.138$ per kilowatt, the calculation would be $14.12 \times 0.138=\$ 1.95$. The 2020 crop budgets use $\$ 2.27 /$ gallon of diesel. If you use electricity, the cost would be about 50 percent of that cost. However, with electricity you must also include connect charges, and in order to get the best rates, you'll need to sign up for load management.
Table 4. Conversion of, Diesel to Electricity
Propane, Gasoline, and Natural Gas*

Energy Source	Units	Multiplier
Electricity	Kilowatt hours	14.12
Propane	Gallons	1.814
Gasoline	Gallons	1.443
Natural gas	1000 Cubic Feet	0.2026

*Source: Estimating the Savings from Improving Pumping Plant
Performance by UNL Irrigation Engineer, Derrel Martin

Item	Price per Unit
Seed	
E3 Enlist Soybeans	$\$ 58.00 / \mathrm{bag}$
E3 Enlist Soybeans Treated	$\$ 62.00 / \mathrm{bag}$
RR2 Soybeans	$\$ 58.00 / \mathrm{bag}$
RR2 Soybeans Treated	$\$ 62.00 / \mathrm{bag}$
RR2 Soybeans Xtend	$\$ 60.00 / \mathrm{bag}$
RR2 Soybeans Xtend Treated	$\$ 64.00 / \mathrm{bag}$
Sorghum Safened/Insect	$\$ 3.50 /$ pound
Sorghum Sudan	$\$ 0.90 /$ pound
Sorghum Sudan (Treated)	$\$ 1.10 /$ pound
Sorghum Sudan Brown $($ Treated)	$\$ 1.50 /$ pound
Sorghum Sudan Brown Midrib	$\$ 1.30 /$ pound
Sugar Beets RR Poncho	$\$ 180.00 /$ acre
Sunflower Clearfield	$\$ 360.00 /$ bag
Wheat	$\$ 0.08 /$ pound
Wheat (Certified Treated)	$\$ 0.23 /$ pound
Wheat Cover Crop	$\$ 0.08 /$ pound

Diesel Fuel Conversion for Center Pivots

The crop production budgets with center pivot irrigation were developed with a pumping lift of 125 feet and 35 psi pressure to determine the amount of diesel fuel used per hour. Table 5 was developed by Derrel Martin to determine the amount of diesel fuel for various pumping lifts and pressures to pump an acre-inch of water.

For example, the amount of diesel required to pump an acre-inch of water with 125 feet of lift at 35 psi is 1.88 gallons with a pump performance rating of 100 percent. If the producer has a lift of 300 feet and a pressure of 50 psi , the diesel fuel required at a performance rating of 100 percent is 3.79 gallons per acre-inch. If the rating on the producer's pump is 80 percent, the diesel fuel required will be 4.74 gallons per acre-inch of water.

With this information, the producer can calculate the additional cost since the diesel fuel required is now 4.74 gallons per acre-inch vs. 1.88 gallons per acre-inch. This is 2.86 gallons more per acre-inch. If a crop budget requires 9 inches, the additional diesel fuel would be 25.74 gallons of diesel at $\$ 2.27 /$ gallon (9 inches x 2.86 gallons). The producer's additional cost would be $\$ 58.43 /$ acre.

Table 5. Adjusting diesel fuel required by center pivots for various lifts and pressures.
125 feet of lift and 35 PSI are used in the crop budgets. This table provides adjustment figures for diesel fuel when different lifts and pressures are used.

Lift Feet	Pressure at								
	10	20	30	35	40	50	60	80	
0	0.21	0.42	0.63	0.74	0.84	1.05	1.26	1.69	
25	0.44	0.65	0.86	0.97	1.07	1.28	1.49	1.91	
50	0.67	0.88	1.09	1.20	1.30	1.51	1.72	2.14	
75	0.89	1.11	1.32	1.43	1.53	1.74	1.95	2.37	
100	1.12	1.33	1.54	1.65	1.75	1.97	2.18	2.60	
125	1.35	1.56	1.77	1.88	1.98	2.19	2.40	2.83	
150	1.58	1.79	2.00	2.11	2.21	2.42	2.63	3.05	
200	2.03	2.25	2.46	2.57	2.67	2.88	3.09	3.51	
250	2.49	2.70	2.91	3.02	3.12	3.33	3.54	3.97	
300	2.95	3.16	3.37	3.48	3.58	3.79	4.00	4.42	
350	3.40	3.61	3.82	3.93	4.03	4.25	4.46	4.88	
400	3.86	4.07	4.28	4.39	4.49	4.70	4.91	5.33	
*Multiplier when pumping plant performance rating is less than 100 percent.									
Rating \%	100	90	80	70	60	50			
Multiplier	1.00	1.11	1.25	1.43	1.67	2.00			

* Gallons of diesel fuel required to pump an acre-inch of water at pump performance ratings of 100 percent.

Source: Estimating the Savings From Improving Pumping Plant Performance by UNL Extension Irrigation Specialist Derrel Martin.

Table 6. Federal Crop Insurance Premium Estimates.
Estimates for 2020 are based on 2019 75\% LP on Dryland Crops and 70\% LP on Irrigated Crops (LP is Level by Practice).

Budget	Dryland or Irrigated	Area	Yield	Per Acre Premium	Budget	Dryland or Irrigated	Area	Yield		Acre mium
1-Alfalfa	Dryland	State	N/A	N/A	42-Dry Beans	Irrigated	Panhandle	27 cwt	\$	23.00
2-Alfalfa	Dryland	State	N/A	N/A	43-Dry Beans	Irrigated	Panhandle	27 cwt	\$	23.00
3-Alfalfa	Dryland	State	N/A	N/A	44-Dry Beans	Irrigated	Panhandle	27 cwt	\$	23.00
4-Alfalfa	Dryland	State	2.8 ton	N/A	45-Grain Sorghum	Dryland	Southwest	115 bushel	\$	24.00
5-Alfalfa	Dryland	State	2.8 ton	N/A	46-Grain Sorghum	Dryland	State	135 bushel	\$	21.00
6-Alfalfa	Irrigated	State	3.8 ton	N/A	47-Grain Sorghum	Dryland	Southwest	120 bushel	\$	24.00
7-Alfalfa	Irrigated	State	4 ton	N/A	48-Grain Sorghum	Irrigated	State	170 bushel	\$	13.00
8-Alfalfa	Irrigated	Panhandle	2.5 ton	N/A	49-Grass	Irrigated	State	N/A		N/A
9-Alfalfa	Dryland	State	4.4 ton	N/A	50-Grass Hay	Dryland	State	2.2 ton		N/A
10-Alfalfa	Irrigated	State	6.7 ton	N/A	51-Millet	Dryland	Panhandle	22 cwt	\$	7.00
11-Alfalfa	Irrigated	State	6.8 ton	N/A	52-Millet	Dryland	Panhandle	22 cwt	\$	7.00
12-Alfalfa	Irrigated	Panhandle	6.6 ton	N/A	53-Oats	Dryland	State	85 bushel	\$	10.00
13-Alfalfa	Irrigated	State	6.6 ton	N/A	54-Pasture	Irrigated	State	11 AUM		N/A
14-Alfalfa	Irrigated	State	6.8 ton	N/A	55-Peas	Dryland	Panhandle	35 bushel	\$	11.00
15-Corn	Dryland	State	100 bushel	\$ 26.00	56-Sorghum-Sudan	Dryland	State	5 ton		N/A
16-Corn	Dryland	State	110 bushel	\$ 26.00	57-Soybeans	Dryland	State	45 bushel	\$	25.00
17-Corn	Dryland	Eastern	160 bushel	\$ 6.00	58-Soybeans	Dryland	State	50 bushel	\$	25.00
18-Corn	Dryland	Eastern	170 bushel	\$ 6.00	59-Soybeans	Dryland	State	45 bushel	\$	25.00
19-Corn	Dryland	State	135 bushel	\$ 28.00	60-Soybeans	Irrigated	State	67 bushel	\$	7.00
20-Corn	Dryland	Eastern	180 bushel	\$ 6.00	61-Soybeans	Irrigated	State	70 bushel	\$	7.00
21-Corn	Dryland	State	140 bushel	\$ 28.00	62-Soybeans	Irrigated	State	75 bushel	\$	7.00
22-Corn	Dryland	Eastern	185 bushel	\$ 6.00	63-Soybeans	Irrigated	State	64 bushel	\$	7.00
23-Corn	Dryland	State	145 bushel	\$ 29.00	64-Soybeans	Irrigated	State	78 bushel	\$	7.00
24-Corn	Dryland	Eastern	195 bushel	\$ 7.00	65-Soybeans	Irrigated	State	78 bushel	\$	7.00
25-Corn	Dryland	Southwest	130 bushel	\$ 26.00	66-Soybeans	Irrigated	State	78 bushel	\$	7.00
26-Corn	Irrigated	State	245 bushel	\$ 9.00	67-Sugarbeet	Irrigated	Panhandle	26 ton	\$	35.00
27-Corn	Irrigated	State	255 bushel	\$ 9.00	68-Sugarbeet	Irrigated	Panhandle	26 ton	\$	35.00
28-Corn	Irrigated	State	250 bushel	\$ 9.00	69-Sugarbeet	Irrigated	Panhandle	26 ton	\$	35.00
29-Corn	Irrigated	Panhandle	195 bushel	\$ 15.00	70-Sugarbeet	Irrigated	Panhandle	26 ton	\$	35.00
30-Corn	Irrigated	State	245 bushel	\$ 9.00	71-Sunflower	Dryland	Panhandle	13 cwt	\$	14.00
31-Corn	Irrigated	State	250 bushel	\$ 9.00	72-Sunflower	Dryland	Panhandle	16 cwt	\$	14.00
32-Corn	Irrigated	State	275 bushel	\$ 10.00	73-Sunflower	Irrigated	Panhandle	30 cwt	\$	10.00
33-Corn	Irrigated	State	275 bushel	\$ 10.00	74-Wheat	Dryland	Southwest	55 bushel	\$	10.00
34-Corn	Irrigated	State	275 bushel	\$ 10.00	75-Wheat	Dryland	Panhandle	70 bushel	\$	11.00
35-Corn	Irrigated	State	235 bushel	\$ 9.00	76-Wheat	Dryland	Panhandle	65 bushel	\$	10.00
36-Corn	Irrigated	State	245 bushel	\$ 9.00	77-Wheat	Dryland	Panhandle	60 bushel	\$	9.00
37-Corn	Irrigated	Panhandle	195 bushel	\$ 15.00	78-Wheat	Dryland	Southwest	80 bushel	\$	13.00
38-Corn	Irrigated	Panhandle	205 bushel	\$ 16.00	79-Wheat	Irrigated	Panhandle	105 bushel	\$	10.00
39-Corn	Irrigated	State	240 bushel	\$ 9.00	80-Wheat	Irrigated	Panhandle	90 bushel	\$	9.00
40-Corn	Irrigated	State	28 ton	\$ 9.00	81-Cover Crop	Dryland	State	N/A		N/A
41-Dry Beans	Irrigated	Panhandle	27 cwt	\$ 23.00	82-Cover Crop Grazing	Dryland	State	N/A		N/A

Source: Crop insurance rates for various crops were provided by the Farm Credit Services of America, North Platte, NE office based on 2019 federal crop insurance rates. Premiums will vary by location, yield, and coverage level. Crop insurance premiums estimated for eastern Nebraska budgets are figured using EP (Enterprise Units by Practice). The estimates in this chart do not include hail insurance premium costs.

