Herbicide Modes of Action (effect on plant growth)

This chart groups herbicides by their modes of action to assist you in selecting herbicides 1) to maintain greater diversity in herbicide use and 2) to rotate among herbicides with different sites of action to delay the development of herbicide resistance.

<table>
<thead>
<tr>
<th>Site of Action Group*</th>
<th>Site of Action</th>
<th>No. of Resistant Weed Species in U.S.</th>
<th>Chemical Family</th>
<th>Active Ingredient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipid Synthesis Inhibitors</td>
<td>ACCase Inhibitors (acetyle CoA carboxylase)</td>
<td>15</td>
<td>Arloxyphenoxy propionate</td>
<td>fenoxaprop, fluazifop, quizalofop, cyclohexanedione, clodhimgth, sethoxydim</td>
</tr>
<tr>
<td></td>
<td>ALS Inhibitors (acetolactate synthase)</td>
<td>38</td>
<td>Sulfonilurea</td>
<td>chlorimuron, foramsulfuron, halosulfuron, iodosulfuron, nicosulfuron, prosulfuron, rimsulfuron, thifensulfuron, tribenuron</td>
</tr>
<tr>
<td></td>
<td>EPSP Synthase Inhibitor (5-enolpyruvyl-shikimate-3-phosphate)</td>
<td>9</td>
<td>None accepted</td>
<td>glyphosate</td>
</tr>
<tr>
<td>Amino Acid Synthesis Inhibitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PPO Inhibitors</td>
<td>7</td>
<td>None accepted</td>
<td>glyphosate</td>
</tr>
<tr>
<td></td>
<td>Photosystem I Electron Diverter</td>
<td>2</td>
<td>Diphenylether</td>
<td>acifluorfen, fomesafen, lactofen</td>
</tr>
<tr>
<td></td>
<td>Photosystem II Inhibitors</td>
<td>6</td>
<td>Dinitroaniline</td>
<td>ethalfluralin, pendimethalin, trifluralin</td>
</tr>
<tr>
<td></td>
<td>Photosystem II Inhibitors (different binding than 5 & 6)</td>
<td>7</td>
<td>Ureas</td>
<td>linuron</td>
</tr>
<tr>
<td></td>
<td>Photosystem II Inhibitors (different binding than 5 & 6)</td>
<td>15</td>
<td>Chloroacetamide</td>
<td>acetochlor, alachlor, metachlor, dimethenamid, pyroxasulfone, oxyacetamide, flufenacet</td>
</tr>
</tbody>
</table>

*Site of Action Group is a classification system developed by the Weed Science Society of America.

This table is excerpted with permission from the Corn and Soybean Herbicide Chart (GWC-3), part of the Glyphosate, Weeds, and Crop Series published by Purdue University through a cooperative effort of weed scientists in the 16-state USDA North Central Region. Contained here are pages 8-10 of the 2016 Guide for Weed, Disease, and Insect Management in Nebraska. The 300+ page guide is available at Marketplace.unl.edu © The Board of Regents of the University of Nebraska–Lincoln. All rights reserved.
Classification of Herbicides by Mode and Site of Action and Chemical Family

Herbicides may be classified into families based on how they kill plants (mode of action and site of action) or by chemical similarity. An example of a common commercial herbicide containing the active ingredient is also listed. Please refer to the Herbicide Dictionary to identify other commercial herbicides that contain the same active ingredient. In some cases, herbicides from different chemical families have a similar site of action. A knowledge of herbicide families and herbicide mode and site of action will reduce the risk of choosing herbicides that will lead to the development of herbicide-resistant weeds or problems with chemical carryover.

Repeated use of a herbicide or herbicides with the same site of action may lead to the selection of herbicide-resistant weeds, or a shift in the weed species present in the field to weeds tolerant to a particular herbicide or herbicide family. For example, repeated use of ALS inhibitors can result in the selection for ALS-resistant weeds. Using both sulfonyleurea and imidazolinone herbicides (Classic, Pursuit, etc.) in the same growing season can result in increased carryover problems or possible crop injury.

These problems can be lessened by rotating or combining herbicides with different action sites. In the table the site of herbicide uptake is indicated by: \(R = \) root uptake; \(S = \) shoot uptake; and \(F = \) foliage uptake. Letter sequence indicates the primary order of herbicide uptake. Repeated use of herbicides with a common mode and site of action pose the highest risk of an additive effect which can lead to resistant weed development, additional carryover, or more crop injury. Refer to the journal, *Weed Technology*, 11: 384-393 (1997) for additional information on herbicide classification.

Lipid Synthesis Inhibition

Group 1. ACCCase inhibition

1. Arylxypropoxypropionates (FOPs)
 - clodinafop propargyl — Discovery — F
 - diclofop — Hoelon — F
 - fenoxaprop — Acclaim Extra — F
 - fluazifop — Fusilade DX — F
 - pinoxaden — Axial — F
 - quizalofop-P — Assure II — F

2. Cyclohexanediones (DIMs)
 - clethodim — Select Max — F
 - sethoxydim — Poast — F
 - tralkoxydim — Achieve — F

Amino Acid Synthesis Inhibition

Group 2. ALS-AHAS inhibition

1. Imidazolinones
 - imazamethabenz — Assert — F/R
 - imazamox — Raptor — F/R
 - imazapic — Plateau — F/R
 - imazapyr — Arsenal — R/F
 - imazaquin — Scepter — R/F
 - imazethapyr — Pursuit — R/F

2. Sulfonyleureas
 - bensulfuron — Londax — F/R
 - chlorimuron — Classic — F/R
 - chlorsulfuron — Clean/Telar — F/R
 - ethamsulfuron — Muster — F
 - foramsulfuron — Option — F
 - halosulfuron — Permit — F/R
 - iodosulfuron — Autumn — F
 - metsulfuron — Ally/escort — F/R
 - nicosulfuron — Accent — F
 - primisulfuron — Beacon — F/R
 - prosulfuron — Peak — F/R
 - rimsulfuron — Matrix — F/R
 - sulfoeturon — Oust — F/R
 - sulfosulfuron — Maverick
 - thifensulfuron — Harmony — F/R
 - triasulfuron — Amber — F/R
 - tribenuron — Express — F/R
 - triflusulfuron — Upbeet — F

Seedling Growth Inhibition

Group 3. Microtubule assembly inhibition

1. Dinitroanilines
 - benfluaril — Balan — S/R
 - ethalfluralil — Curbit/Sonalan — S
 - oryzalin — Surflan — S
 - pendimethalin — Prowl — S
 - prodimi — Barricade — S
 - trifluralin — Treflan — S

2. Pyridines
 - dithiopyr — Dimension — R/F

3. Benzamides
 - bromamidine — Kerb — S/R

4. Benzolic acids
 - DCPA — Dacthal — R

Group 15. Long-chain fatty acid inhibitor

1. Chloroacetamides
 - acetochlor — Harness/Surpass NXT — S/R
 - alachlor — Intrro — S/R
 - dimethenamid — Outlook — S/R
 - metolachlor — Dual — S/R
 - propachlor — Ramrod — S/R

2. Oxyacetamides
 - flufenacet — Define — S/R

3. Acetamides
 - naproxam — Devrinol — R/S

4. Oxazoles
 - pyroxasulfone — Zidua — S/R

© The Board of Regents of the University of Nebraska–Lincoln. All rights reserved.
Seedling Growth Inhibition (continued)

Group 16. Lipid synthesis inhibition (not ACCase)
1. Benzofuranes
 ethofumesate — Nortron SC — S/R

Group 8. Phosphorodithionates
1. Benzofuranes
 bensulide — Betasan — R
2. Thiocarbamates
 butylate — Sutan + — S/R
cycloate — Ro-Neet — S/R
EPTC — Eradican — S/R
triallate — Far-Go — S/R

Group 19. Auxin transport inhibition
1. Phthalates
 naptalam — Alanap — R/F
2. Semicarbazone
diflufenpyr — Distinct — F

Cell Wall Synthesis Inhibition

Group 21. Benzamides
isoxaben — Gallery — R/S

Group 20. Nitriles
dichlobenil — Casoron — R/F

Growth Regulators

Group 4. Synthetic auxins
1. Phenoxyacetic acids
 2,4-D — many — F/R
 2,4-DB — Buycryac — F
dichlorprop — many — F
MCPA — many — F/R
mecoprop — many — F
2. Benzoic acids
dicamba — Banvel/Clarity — F/R/S
3. Pyridine carboxylic acids
 aminopyralid — Milestone — F/R
clopyralid — Stinger — F/R
fluoroxypry — Starane — F
picloram — Tordon — F/R
triclopyr — Garlon — F/R
4. Quinoline carboxylic acids
 quinclorac — Paramount — F/S
5. Pyrimidine carboxylic acids
 aminoclopyralchlor — Imprelis — F/R

Photosynthesis Inhibition (Photosystem II) — Classes differ in binding behavior

Group 5. C₃ class
1. Triazines
 ametryn — Evik — R/F
 atrazine — AAtrex — R/F
 prometon — Pramitol — R/F
 simazine — Princep — R
2. Triazinones
 hexazinone — Velpar — R/F
 metribuzin — Sencor — R/F
3. Phenylcarbamates
desmedipham — Betanex — F
phenmedipham — Spin-Aid — F
4. Uracils
 bromacil — Hyvar — R
terbacil — Sinbar — R
5. Pyridazinones
 pyrazon — Pyramide — R/F

Group 7. C₂ class
1. Phenylureas
diuron — Karmex — R
linuron — Lorox — R/F
siduron — Tupsersan — R
tebuthiuron — Spike — R

Group 6. C₅ class
1. Benzothiadiazinones
 bentazon — Basagran — F
2. Nitriles
 bromoxynil — Buctril — F
3. Phenylpyridazine
 pyridazine — Tough — F

Cell Membrane Disruption

Group 14. PPO inhibition
1. Diphenylethers
 acifluorfen — Blazer — F
 fomesafen — Reflex/Flexstar — R/F
 lactofen — Phoenix/Cobra — F
 oxyfluorfen — Goal — R/S
2. N-phenylphthalimides
 flumiclorac — Resource — F
 flumioxazin — Valor — S/F
3. Triazinones
 sulflurazone — Authority/Spartan — R
carfentrazone ethyl — Aim — F
4. Thiadiazoles
 fluthiacet methyl — Cadet — F
5. Phenylpyrazoles
 pyraflufen-ethyl — Vida — F
6. Trifluoromethyl uracils
 safuronil — Kitor — R/F/S

Group 22. Photosystem I electron diversion
1. Bipyridyls
 dichlobenil — Casoron — R/F/S
 saflufenacil — Kixor — R/F/S

Unclassified or Unknown

1. Triazole
 amitrole — Amitrole — F

Nitrogen Metabolism Inhibition

Group 10. Glutamine synthetase inhibition
1. glufosinate — Liberty — F

Unclassified or Unknown

1. Organoarsenicals
 DSMA — many — F
 MSMA — many — F
2. Other
 endosulfan — Aquathol — R/F
difenzoquat — Avenge — F
 fosamine — Krenite — F